Assessing psychology students’ difficulties in elementary variance analysis

Osmar D. Vera, Carmen Batanero, Carmen Díaz, Maria del Mar López-Martín


In this paper we present a study directed to assess the students’ difficulties in understanding elementary variance analysis. Responses from 224 undergraduate psychology students who had previously studied this topic to a questionnaire are analysed. Contents of the questionnaire include the selection of a variance analysis model, understanding of assumptions and the associated linear model in this procedure, the computations involved in variance analysis and the interpretation of results. While the understanding of computations, the selection of the model, and the understanding of the decomposition of the variance in the linear model were easy, the students had difficulties in understanding the assumptions of variance analysis and in interpreting the results in the problem context. These results provide information in an area where little prior research is available.

Texto completo:



BATANERO, C.; DÍAZ, C. Methodological and didactical controverteis around statistical inference. In: Journees de la Societe Française de statistique, 36, 2006, Paris: Actes… París Societé Française de Statistique [CD-ROM].

CASTRO SOTOS, A. E, et al. Student´s misconceptions of statistical inference: A review of the empirical evidence form research on statistical education. Educational Research Review, v.2, n. 2, p. 98-113, jun. 2007.

CHOW, L. S. Statistical significance: Rationale, validity and utility. London: Sage, 2006.

CUMMING, G.; WILLIAMS, J.; FIDLER, F. Replication, and researchers’ understanding of confidence intervals and standard error bars. Understanding Statistics, v. 3, n. 4, p. 299-311, jun. 2004.

DÍAZ, C.; BATANERO; C.; WILHELMI, M. R. Errores frecuentes en el análises de datos en educación y Psicología. Publicaciones, v. 35, n. 1, p. 109-133, dic. 2008.

DRIJVERS, P., et al. One episode, two lenses. A reflective analysis of student

learning with computer algebra from instrumental and onto-semiotic perspectives.

Educational Studies in Mathematics, v. 82, n. 1, p. 23-49, jan. 2013.

DUNN, O. J.; CLARK, V.A. Applied statistics: Analysis of variance and regressou. Nueva York: John Wiley, 1987.

FALK, R.; GREENBAUM, C. W. Significance tests die hard: The amazing persistente of a probabilistic misconception. Theory and Psychology, v.5, n.1, p. 75-98, feb. 1995.

GREEN, K. E. Assessing understanding of the concept of interaction in analysis of variance. In: IASE/ISI-Satellite Conference on Assessing Student Learning in Statistics. 2007, Guimarães, Portugal: Proceedings. International Statistical Institute. Retrieved from: http://iase Green.pdf. Accessed on dec. 29, 2015.

GODINO, J. D. Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathematiques, v. 22, n. 2/3, p. 237-284, 2002.

GODINO, J. D.; BATANERO, C.; FONT, V. The onto-semiotic approach to research in mathematics education. ZDM, The International Journal on Mathematica Education, v.39, n.1/2, p. 127-135. march. 2007.

HARLOW, L. L.; MULAIK, S. A.; STEIGER, J. H. What if there were no significando tests? Mahwah, NJ: Lawrence Erlbaum. 1997.

HARRADINE, A.; BATANERO, C.; ROSSMAN, A. (2011). Students and teachers’ knowledge of sampling and inference. In: BATANERO, C.; BURRILL, G.; READING, C. (Eds.). Teaching statistics in school mathematics. Challenges for teaching and teacher education. New York: Springer. 2011, p. 235-246.

KRAUSS, S.; WASSNER, K. How significance tests should be presented to avoid the typical misinterpretations. In: B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town: International Association for Statistics Education. Online: Accessed on dec. 29, 2015.

LECOUTRE, B.; LECOUTRE, M. P. Uses, abuses and misuses of significance

tests in the scientific community: Won’t the Bayesian choice be unavoidable?

International Statistical Review, v. 69, n.3, p. 399-417, dec. 2001.

MONTGOMERY, D. C. Design and analysis of experiments. New York: John Wiley, 2008.

OLIVO, E. Significado de los intervalos de confianza para los estudiantes de ingeniería

en México. 2006. p. 230 Dissertation (Doctoral Program in Mathematics

Education) University of Granada, Spain, 2008.

PARDO, A., et al. La interacción entre factores en el análisis de la varianza: error

de interacción. Psicothema v.19, n.2, p. 343-349, dec. 2007.

ROSNOW, R. L.; ROSENTHAL, R. If you’re looking at the cell means, you’re not

looking at only the interaction (unless all main effects are zero). Psychological

Bulletin, v. 110, p. 574-576, nov. 1991.

RUBIN, A.; ROSEBERY, A. S. Teachers’ misunderstandings in statistical reasoning;

evidence from a field test of innovative materials. In HAWKINS, A. (Ed.)

Training teachers to teach Statistics. The Netherlands: International Statistical

Institute, p. 72-89. 1990.

UMESH, U. N., et al. Type IV error in marketing research: The investigation of

ANOVA interactions. Journal of the Academy of Marketing Science, v. 24, p. 17-26,


VALLECILLOS, A. Estudio teórico experimental de errores y concepciones sobre el contraste de hipótesis en estudiantes universitarios. 430 p. Dissertation (Doutoral Program in Mathematics Education) University of Granada, Spain, 1994.

VERA, O. D.; DÍAZ, C.; BATANERO, C. Dificultades en la formulación de hipóteses estadísticas por estudiantes de Psicología. Unión, n. 27, v.1, pp. 41-61, sep. 2011.

ZIEFFLER, A., et al. A framework to support research on informal inferential reasoning. Statistics Education Research Journal, v.7 n.2, p. 5-19, may. 2008.

ZUCKERMAN, M., et al. Contemporary issues in the analysis of data: A survey of 551 psychologists. Psychological Science, v. 4, n. 1 p. 49-52, jan. 1993.



  • Não há apontamentos.

Direitos autorais 2017 Editora Universitária Champagnat