System Dynamics for Sustainable Transportation Policies: A Systematic Literature Review
Parole chiave:
Sustainable transportation. Urban mobility. Urban policies. System dynamics. Systematic literature reviewAbstract
Systems Dynamics (SD) is an efficient method that allows to analyze systems with dynamic complexity and policy resistance. The holistic approach of SD is suitable to analyze the current transportation problems. Among the applications of SD in the transportation sector, the use of this tool in the development and implementation of sustainable transport policies stands out. In this context, this paper aims to conduct a systematic literature review to assess the use of SD in the development and implementation of urban policies focused on sustainable transportation. The results show that most studies analyze policies focused on reducing the negative externalities of transportation, highlighting the efforts to reduce air pollutant emissions and traffic congestion. However, we did not find a study that analyzes non-motorized and motorized modes by economic, environmental, social, spatial and traffic variables. At the end of this study, the gaps found in the literature are pointed out, being available to further exploration in future studies.
Downloads
Riferimenti bibliografici
Abbas, K. A., & Bell, M. G. H. (1994). System dynamics applicability to transportation modeling. Transportation Research
Part A: Policy and Practice, 28(5), 373-390. http://dx.doi.org/10.1016/0965-8564(94)90022-1
Albalate, D., & Fageda, X. (2019). Congestion, road safety, and the effectiveness of public policies in urban areas.
Sustainability, 11(18), 1-21. http://dx.doi.org/10.7213/10.3390/su11185092
Alonso, A., Monzón. A., & Wang, Y. (2017). Modeling land use and transport policies to measure their contribution to
urban challenges: The case of Madrid. Sustainability, 9(378), 1-28, http://dx.doi.org/10.3390/su9030378
Armah, F., A., Yawson, D. O., & Pappoe, A. N. M. (2010). A system dynamics approach to explore traffic congestion and
air pollution in the city of Accra, Ghana. Sustainability, 2(1), 252-265. http://dx.doi.org/10.3390/su2010252
Batur, I., & Koc, M. (2017). A review of System Dynamics applications in sustainable urban transportation. Proceedings
of the European conference on sustainability, energy & the environment, July 9-10, Brighton, United Kingdom.
Batur, I., Islam, S. B., & Koc, M. (2019). Impact assessment of supply-side and demand-side policies on energy
consumption and CO2 emissions from urban passenger transportation: The case of Istanbul. Journal of Cleaner
Production, 219, 319-410. http://dx.doi.org/10.1016/j.jclepro.2019.02.064
Bisen, A., Verma, P., Chaube, A., & Jain, R. (2014). Evaluating emission mitigation strategies for sustainable
transportation system: a system dynamics approach. World Review of Intermodal Transportation Research, 5(2), 101-
http://dx.doi.org/10.1504/WRITR.2014.067228
Bernardino, J. P. R., & Van der Hoofd, M. (2013). Parking policy and urban mobility level of service – System Dynamics
as a modelling tool for decision making. European Journal of Transport and Infrastructure Research, 13(3), 239-258.
http://dx.doi.org/10.18757/ejtir.2013.13.3.3001
Bramer, W. M., Rethlefsen, M. L., Kleijnen, J., & Franco, O. (2017). Optimal database combinations for literature searches
in systematic reviews: a prospective exploratory study. Systematic Reviews, 6(245), 1-12.
http://dx.doi.org/10.1186/s13643-017-0644-y.
Brereton. P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic
literature review process within the software engineering domain. The Journal of Systems and Software 80(4):571-583.
http://dx.doi.org/ 10.1016/j.jss.2006.07.009
Bubel, D., & Szymczyk, K. (2016). The Smart Freight projects as a superior way to cope with congestion and
environmental negative externalities in urban areas. Transportation Research Procedia, 16, 25-34.
http://dx.doi.org/10.1016/j.trpro.2016.11.004
Cheng, Y., Chang, Y., & Lu, I. J. (2015). Urban transportation energy and carbon dioxide emission reduction strategies.
Applied Energy, 157, 953-973. http://dx.doi.org/10.1016/j.apenergy.2015.01.126
Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012) A systematic literature review of empirical
evidence on computer games and serious games. Computer & Education, 59, 661-686.
http://dx.doi.org/10.1016/j.compedu.2012.03.004
Dupuis, J., & Knoepfel, P. (2013). The adaptation policy paradox: The implementation deficit of policies framed as
climate change adaptation. Ecology and Society, 18(4), 1-16. http://dx.doi.org/10.5751/ES-05965-180431
Eck, N. J., Waltman, L., Dekker, R., & Berg, J. (2010). A comparison of Two Techniques for Bibliometric Mapping:
Multidimensional Scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12),
-2416. http://dx.doi.org/10.1002/asi.21421
Ercan T., Onat, N. C., & Tatari, O. (2016). Investigating carbon footprint reduction potential of public transportation in
United States: A system dynamic approach. Journal of Cleaner Production, 133(1), 1260-1276.
http://dx.doi.org/10.1016/j.jclepro.2016.06.051
Fontoura, W. B., Chaves, G. L. D., & Ribeiro, G. M. (2019a). The Brazilian Urban Mobility Policy: The impact in São Paulo
transport system using system dynamics. Transport Policy, 73, 51-61. http://dx.doi.org/10.1016/j.tranpol.2018.09.014
Fontoura, W. B., Ribeiro, G. M., Chaves, G. L. D. (2019b). A framework for evaluating dynamic impacts of the Brazilian
Urban Mobility Policy for transportation socioeconomic systems: A case study in Rio de Janeiro. Journal of Simulation,
http://dx.doi.org/10.1080/17477778.2019.1701392
Guzman, L. A., de la Hoz, D., & Monzón, A. (2014). Optimal and long-term dynamic transport policy design: Seeking
maximum social welfare through a pricing scheme. International Journal of Sustainable Transportation, 8(4), 297-316.
http://dx.doi.org/10.1080/15568318.2012.696772
Haghshenas, H., Vaziri, M., & Gholamialam, A. (2015). Evaluation of sustainable policy in urban transportation using
system dynamics and world cities data: A case study in Isfahan. Cities, 45, 104-115.
http://dx.doi.org/10.1016/j.cities.2014.11.003
Hassan, A., M., & Lee. H. (2015). Toward the sustainable development of urban areas: An overview of global trends in
trials and policies. Land Use Policy, 48, 199-212. http://dx.doi.org/10.1016/j.landusepol.2015.04.029
Hu, W., Dong, J., Hwang, B., Ren, R., Chen, Y., & Chen, Z. (2020). Using system dynamics to analyze the development of
urban freight transportation system based on rail transit: A case study of Beijing. Sustainable Cities and Society, 53, 1-
http://dx.doi.org/10.1016/j.scs.2019.101923
Keith, D. R., Struben, J. J. R., & Naumov, S. (2020). The diffusion of alternative fuel vehicles: A generalized model and
future research agenda. Journal of Simulation. http://dx.doi.org/10.1080/17477778.2019.1708219
Khakee, A. (2014). An unbalanced model for sustainable urban development. International Journal of Urban Sustainable
Development, 6(1), 52-64. http://dx.doi.org/10.1080/19463138.2013.870765
Khanna, I. K., Singh, N., Vrat, P. (1985). System Dynamics in Urban Transportation Planning and Policy Analysis.
Proceedings of the Conference of the System Dynamics Society, Keystone, CO, 453-462.
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in
software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15,
http://dx.doi.org/10.1016/j.infsof.2008.09.009
Leopold, A. (2016). Energy related system dynamic models: a literature review. Central European Journal of Operations
Research, 24, 231-261. http://dx.doi.org/10.1007/s10100-015-0417-4
Li, Y., Li, Y., Zhou, Y., Shi, Y., & Zhu, X. (2012). Investigating of a coupling model of coordination between urbanization
and the environment. Journal of Environmental Management, 98, 127-133.
http://dx.doi.org/10.1016/j.jenvman.2011.12.025
Li, W., Wu, C., & Zang, S. (2014). Modeling urban land use conversion of Daqing City, China: a comparative analysis of
“top-down” and “bottom-up” approaches. Stochastic Environmental Research and Risk Assessment, 28(4), 817-828.
http://dx.doi.org/10.1007/s00477-012-0671-0
Lin, B., & Du, Z. (2015). How China’s urbanization impacts transport energy consumption in the face of income
disparity. Renewable and Sustainable Energy Cities, 52, 1693-1701. http://dx.doi.org/10.1016/j.rser.2015.08.006
Litman, T. (2019). Well Measured: Developing indicators for sustainable and livable transport planning. Victoria
Transport Policy, Victoria, BC, Canada.
Liu, H., Liu, T., Liu, L., Guo, H. C., Yu, Y. J., &Wang, Z. (2010). Integrated simulation and optimization approach for the
urban transportation-environmental system in Beijing. Journal of Environmental Informatics, 15(2), 99-111.
http://dx.doi.org/10.3808/jei.201000170
Luna, T. F., Uriona-Maldonado, M., Silva, M. E., & Vaz, C. R. (2020). The influence of e-carsharing schemes on electric
vehicle option and carbon emissions: An emerging economy study. Transportation Research Part D, 70, 1-14.
http://dx.doi.org/10.1016/j.trd.2020.102226
Machado, L., & Piccini, L. S. (2018). Os desafios para a efetividade da implementação dos planos de mobilidade urbana.
urbe. Revista Brasileira de Gestão Urbana, 10(1), 72-94. http://dx.doi.org/10.1590/2175-3369.010.001.AO06
Macmillan, A., Roberts, A., Woodcock, J., Aldred, R., & Goodman, A. (2016). Trends in local newspaper reporting of
London cyclist facilities 1992-2012: the role of the media in shaping the systems dynamics of cycling. Accident Analysis
and Prevention, 86, 137-145. http://dx.doi.org/10.1016/j.aap.2015.10.016
Manivannan, G., & Sanjeevi, K. (2012). The Indian Journal of Medical Research (2000-2005): A Bibliometric Analysis.
Journal of Advances in Library and Information Science, 2, 100-103.
Menezes, E., Maia, A. G., & de Carvalho, C. S. (2017). Effectiveness of low-carbon development strategies: Evaluation of
policy scenarios for the urban transport sector in a Brazilian megacity. Technological Forecasting & Social Change, 114,
-241. http://dx.doi.org/10.1016/j.techfore.2016.08.016
Michie, S., & Williams, S. (2003). Reducing work related psychological ill health and sickness absence: a systematic
literature review. Occupational and Environmental Medicine, 60, 3-9. http://dx.doi.org/10.1136/oem.60.1.3
Oliveira, C. M., Bandeira, R. A. M., Goes, G. V., Gonçalves, D. N. S., & D’agosto, M. A. (2017). Sustainable vehicles-based
alternatives in last mile distribution of urban freight transport: a systematic literature review. Sustainability, 9(8), 1-
http://dx.doi.org/10.3390/su9081324
Papageorgiou, G., & Demetriou, G. (2019). Investigating learning and diffusion strategies for sustainable mobility.
Smart and Sustainable Built Environment. http://dx.doi.org/10.1108/SASBE-02-2019-0020
Pérez, J. C., & Carillo, M. H. (2014). Multi-criteria approaches for urban passenger transport systems: a literature
review. Annals of Operations Research, 226(1), 69-87. http://dx.doi.org/10.1007/s10479-014-1681-8
Pfaffenbichler, P. (2003). The strategic dynamic and integrated urban land use transport model MARS (PhD Thesis).
Technical University of Vienna, Wien, Austria.
Pojani, D., & Stead, D. (2015). Sustainable urban transport in the developing world: Beyond megacities. Sustainability,
(6), 7784-7805. http://dx.doi.org/10.3390/su7067784
Procter, A., Bassi, A., Kolling, J., Cox, L., Flanders, N., Tanners, N., & Araujo, R. (2017). The effectiveness of Light Rail
transit in achieving regional CO2 emissions targets is linked to building energy use: insights from system dynamics
modeling. Clean Technologies and Environmental Policy, 19(5). 1459-1474. http://dx.doi.org/10.1007/s10098-017-
-z
Shen, L., Du, L., Yang, X., Du, X., Wang, J., & Hao, J. (2018). Sustainable strategies for transportation development in
emerging cities in China: A simulation approach. Sustainability, 10(844), 1-22. http://dx.doi.org/10.3390/su10030844
Shepherd, S. P. (2014). A review of system dynamics models applied in transportation. Transportmetrica B: Transport
Dynamics, 2(2), 83-105. http://dx.doi.org/10.1080/21680566.2014.916236
Sterman, J. (2000). Business Dynamics: System Thinking and Modelling for a Complex World. New York, USA: McGrawHill.
Sterman, J. D. (2001). System Dynamics modeling tool for learning a complex world. California Management Review,
(4), 8-25. http://dx.doi.org/10.2307/41166098
Thomé, A. M. T., Scarvada, L. P., & Scarvada, A. J. (2016). Conducting systematic literature review in operations
management. Production Planning & Control, 27(5), 408-420. http://dx.doi.org/10.1080/09537287.2015.1129464
Tranfield, D., Denyer, D., & Smart. P. (2003). Towards a methodology for developing evidence-informed management
knowledge by means of systematic review. British Journal of Management, 14, 207-222.
http://dx.doi.org/10.1111/1467-8551.00375
Valdes, C., Monzon, A., & Benitez, F. G. (2016). Sustainable urban transportation strategies: Searching for synergies.
KSCE Journal of Civil Engineering, 20(3), 1066-1075. http://dx.doi.org/10.1007/s12205-016-0685-0
Wen, L., Cao, Y., & Weng, J. (2015). System dynamics method for scenario simulation analysis of urban traffic CO2
emissions in Baoding. Journal of Information and Computational Science, 12(9), 3431-3443. http://dx.doi.org/
12733/jics20106019
Wang, J., Lu, H., & Peng, H. (2008). System Dynamics Model of Urban Transportation System and Its Application.
Journal of Transportation Systems Engineering and Information Technology, 8(3), 83-89.
http://dx.doi.org/10.1016/S1570-6672(08)60027-6
Zolfagharian, M., Romme, A. G. L., & Walrave, B. (2018) Why, when and how to combine system dynamics with other
methods: Towards an evidence-based framework. Journal of Simulation, 12(2), 98-114.