NON-SYNDROMIC MULTIPLE ODONTOCYTIC
KERATOCYSTS: report of case

Keratocistos múltiplos não-sindrômicos: relato de caso

Amar A. Sholapurkar1, Reddy MallelaVarun2, Keerthilatha M. Pai3, Geetha V4

1 Assistant Professor, Department of Oral Medicine & Radiology, Manipal College of Dental Sciences, Manipal, Karnataka, India,
e-mail: dr.amar1979@yahoo.co.in
2 BDS, Manipal, Karnataka, India.
3 Professor and Head, Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Karnataka, India.
4 Associate Professor, Department of General Pathology, Kasturba Medical College, Manipal, Karnataka, India.

Abstract

Odontogenic keratocysts (OKCs) are epithelial developmental cysts which were first described by Phillipsen in 1956. Lesions are frequently multiple and a component of Nevoid Basal Cell Carcinoma Syndrome (NBCCS) (Gorlin Goltz syndrome/ Bifid rib syndrome). We hereby report a case of multiple OKCs in a non-syndromic patient and highlight the general practitioner the importance of diagnosing the disease and enforcing a strict long-term follow-up whenever such a case is identified.

Keywords: Multiple odontogenic keratocysts; Oral pathology; Gorlin Goltz syndrome.

Resumo

Os keratocistos odontogênicos são cistos de desenvolvimento que foram descritos primeiramente por Phillipsen, em 1956. As lesões são frequentemente múltiplas, sendo componentes da síndrome do carcinoma nevoide de células basais (síndrome de Gorlin, síndrome das costelas bifidas). Descreve-se um caso de keratocistos múltiplos em paciente não-sindrômico, enfatizando-se a importância do clínico geral no diagnóstico da doença e reforçando a necessidade de uma preservação a longo prazo tão logo a doença seja diagnosticada.

Palavras-chave: Keratocistos odontogênicos múltiplos; Patologia bucal; síndrome de Gorlin-Gotz.
INTRODUCTION

The maxillofacial region is more prone to cystic lesions than any other part of the body and OKCs are the most common form of cystic lesions affecting the maxillofacial region (1). They are clinically aggressive lesions which are thought to arise from the dental lamina or its remnants (2). OKCs constitute about 3% - 21.5% of odontogenic cysts. (3-7). The peak incidence is during the second to fourth decades of life (7-10). Several studies indicate a male predilection (4-5, 10-12), some studies do not correlate with this (1, 8, 9).

Majority of lesions occur in the mandible; mainly in the posterior body and ascending ramus. (5, 7-8). The angle (8) and symphyseal area is also frequently a locus for this lesion (13). The OKC can be very aggressive owing to its relatively high recurrence rate and its tendency to invade adjacent tissue (5).

Therapeutic approaches vary from marsupialization and enucleation, combined with adjuvant cryotherapy or chemical cautery or Carnoy’s solution to marginal or radical resection (9, 10, 14-17). The recurrence rate has been reported to vary from 2.5% to 62.5% (5-8, 10, 14, 18,19). Malignant transformation of OKCs has also been reported (20). The high recurrence rate and aggressive behavior of the OKC have caused several investigators to regard it as a benign neoplasm rather than a cyst (7, 21).

We discuss the possibility that the current case is a non-syndromic presentation of multiple OKCs.

CASE REPORT

A 24 year old male patient was referred to our department with a chief complaint of swelling in the lower right side of the face since 3 years (Figure 1). The swelling was small initially which gradually increased to the present dimension which was progressive and was associated with pus discharge since 15 days. Patient initially consulted a local dentist, where drainage of pus was done and antibiotics prescribed, followed by partial regression of the swelling. The swelling was associated with pain with gradual onset, intermittent, prickling type, radiating to head on same side, aggravated when swelling appeared and relieved on medication. There was no history of fever. Nothing relevant was reported from medical history.

General examination revealed a swollen face (Figure 1) with depressed nasal bridge, hypertelorism, peripheral edema, sweating and non pitting pedal oedema of the left foot. Extra oral examination revealed a diffuse swelling on the lower right side of the face. There was no evidence of any abnormality of overlying skin (no evidence of sinus/fistula). Inspectory findings were confirmed on palpation and the swelling was tender and there was a slight rise in local temperature. Lymph node examination revealed an enlarged (measuring approximately about 2x2 cm in size) right submandibular lymph node which was mobile and non-tender.

FIGURE 1 - Diffuse swelling on the lower right side of the face
Intraoral examination revealed a diffuse tender swelling in the right labial and buccal sulcus (Figure 2) extending approximately from 42 to 46 and obliterating the labial and buccal sulcus with obvious pus discharge observed in relation to the gingival sulcus related to 44. 18, 28 and 43 were not visible in the oral cavity.

Periapical radiograph of the region of the 43 (Figure 3) revealed a well defined radiolucency with well corticated margin in relation to the crown of impacted 43.

Panoramic radiograph (Figure 4) revealed four cyst-like radiolucencies in upper and lower jaws.
Hence based on the history, clinical examination and imaging, a provisional diagnosis of infected dentigerous cyst in relation to 43 mas made.

Unicystic ameloblastoma, adenomatoid odontogenic tumor and central giant cell granuloma were considered under differential diagnosis. Table 1 shows the differentiating features for those entities which were considered in our differential diagnosis.

TABLE 1 - Differentiating features for those entities which were considered in our differential diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>Peak age</th>
<th>Jaw involved</th>
<th>Area of jaw involved</th>
<th>Associated tooth</th>
<th>Signs or symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentigerous cyst</td>
<td>M=F</td>
<td>Over 18 years</td>
<td>mandible</td>
<td>posterior</td>
<td>Mandibular 3rd molar</td>
<td>Delayed eruption of tooth, asymmetry, swelling</td>
</tr>
<tr>
<td>Unicystic Ameloblastoma</td>
<td>M=F</td>
<td>21 years (average)</td>
<td>mandible</td>
<td>posterior</td>
<td>Mandibular 3rd molar</td>
<td>Delayed eruption of tooth, asymmetry, swelling</td>
</tr>
<tr>
<td>Adenomatoid Odontogenic Tumor</td>
<td>F:M2:1</td>
<td>16.5 years (Average)</td>
<td>Maxilla</td>
<td>Anterior</td>
<td>Maxillary canine</td>
<td>Delayed eruption of tooth, asymmetry, swelling</td>
</tr>
<tr>
<td>Central giant cell granuloma</td>
<td>F:M2.4:1</td>
<td>26 years (Average)</td>
<td>mandible</td>
<td>Anterior to</td>
<td>—</td>
<td>History of previous trauma</td>
</tr>
</tbody>
</table>

Vitality test revealed that 44 was non-vital. Hence multiple OKC’s in relation to 13, 38, 43 and 48 was considered under the radiographic imaging because the occurrence of multiple OKC’s is more common than any other cysts.

The description of radiolucencies is shown in Table 2.

TABLE 2 - Description of the radiographic findings

<table>
<thead>
<tr>
<th>Region</th>
<th>Radiographic Appearance</th>
<th>Approximate size (cm)</th>
<th>Effect on adjacent structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower right anterior region in the pericoronal aspect of impacted canine</td>
<td>Well defined, with sclerotic border</td>
<td>3 x 2</td>
<td>It caused displacement of the lower right central incisor, lateral incisor and first premolar.</td>
</tr>
<tr>
<td>Right ramus of mandible in the pericoronal aspect of impacted 48</td>
<td>Well defined almost involving the whole of ramus, with well defined sclerotic border.</td>
<td>4 x 3</td>
<td>None</td>
</tr>
<tr>
<td>Pericoronal radiolucency was in relation to impacted 38 which was extending into the ramus</td>
<td>Well defined with sclerotic border which was comparatively smaller than the former</td>
<td>3 x 2</td>
<td>Displaced the mandibular canal downwards.</td>
</tr>
<tr>
<td>Pericoronal radiolucency in relation to upper right impacted canine</td>
<td>Well defined with sclerotic border</td>
<td>1 x 0.5</td>
<td>Caused resorption of the over retained deciduous canine</td>
</tr>
</tbody>
</table>
The patient was then referred to the department of General Medicine for evaluation. Nothing abnormal was detected on review of systems. However dermatologic consultation revealed acanthosis nigra.

The patient was then referred to the department of Oral Surgery. Under general anesthesia, the lesions were enucleated under general anesthesia. During the surgery, white cheesy material was found extruding from the cystic lesion.

Microscopic examination revealed keratinized stratified squamous epithelium with absence of rete pegs and palisaded basal cell layer giving an appearance of tombstone or picket fence (Figure 5).

FIGURE 5 - Keratinized stratified squamous epithelium with absence of rete pegs and palisaded basal cell layer giving an appearance of tombstone or picket fence (HE 100 X)

The connective tissue revealed multiple daughter cysts and cystic lumen revealed keratin giving a picture of odontogenic keratocyst.

DISCUSSION

Multiple OKCs commonly occur in NBCCS or Gorlin-Goltz syndrome (22), orofacial digital syndrome (23), Ehler-Danlos syndrome (24), Noonan syndrome (25) and Simpson-Golabi-Behmel syndrome (26). OKCs have a biologic behavior similar to a benign neoplasm (7, 21) and it is still debated whether the origin of OKC is developmental or neoplastic (27).

NBCCS is characterized by multiple OKCs, nevoid basal cell carcinomas of the skin, bifid ribs, calcification of the falx cerebri, and other features (28). OKCs, when associated with NBCCS, present together with skeletal, cutaneous, neurologic, ophthalmic and sexual abnormalities (29). However, these features were not present in our case.

Most frequent clinical manifestations at first admission were reported to be swelling, pain or both (8, 10). Our patient reported with both swelling and pain.

Radiographically, OKCs present as a well defined radiolucent lesions with smooth, usually corticated margins and may be either multilocular or unilocular. There is involvement of an unerupted tooth in 25% to 40% of cases (30). Our case complied with these findings, with all the detected radiolucencies being unilocular, having well corticated margins and being associated with an unerupted tooth.

Histologically, OKCs show the presence of a thin band-like parakeratinized or orthokeratinized stratified squamous epithelium, with a prominent basal layer of columnar or cuboidal cells, and an inflammation-free connective tissue wall (11-12). Microscopic examination in our case revealed orthokeratinized stratified squamous epithelium with absence of rete pegs and palisaded basal cell layer giving an appearance of tombstone or picket fence. The connective tissue revealed multiple daughter cysts and cystic lumen revealed keratin giving a picture of odontogenic keratocyst.

Histopathological studies have suggested that parakeratinization, intramural epithelial remnants and satellite cysts are a more frequent observation among OKC’s associated with NBCCS. (31). However, our case also presented with multiple daughter cysts even though it was non-syndromic.

Treatment modalities include marsupialization and enucleation, combined with adjuvant cryotherapy or chemical cautery or Carnoy’s solution, and marginal or radical resection. Cryosurgery seemed to be very promising in documentation by Schmidt and Pogrel in which there was a recurrence rate of only 11.5% in patients treated with enucleation and liquid nitrogen cryotherapy (15). The tendency for multifocal lesions in both syndromic and non-syndromic patients is of paramount importance since OKC patients are usually treated to “prevent” recurrence at the margins of the initial lesion (13).
OKCs associated with NBCCS are more aggressive and have higher recurrence rates than those associated without syndrome (32).

In conclusion, due to the possibility that multiple OKCs might be the first & only manifestation of NBCCS, the higher rate of recurrence of OKCs in NBCCS and the probable development of ameloblastoma (17, 33) & other associated problems in future, it is the responsibility of the dentist and of the oral surgeon to rule out the presence of this syndrome and start the adequate treatment as soon as the diagnostic is made and provide a careful follow-up.

REFERENCES

Received: 10/10/2008
Recebido: 10/10/2008

Accepted: 11/10/2008
Aceito: 10/11/2008