Alignment and leveling maxillary impacted canines

Alinhamento e nivelamento de caninos superiores impactados

Renata Lima Lorusso[a], José Henrique Gonzaga de Oliveira[b], Eduardo Franzotti Sant’Anna[c], Cristiano Miranda de Araujo[d], Orlando Motohiro Tanaka[e], Odilon Guariza Filho[f], Elisa Souza Camargo[g]

[a] Specialist in Orthodontics, Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR - Brazil
[b] Master in Orthodontics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
[c] PhD in Orthodontics, Federal University of Rio de Janeiro (UFRJ), professor of Orthodontics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
[d] Master in Orthodontics, Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR - Brazil
[e] PhD in Orthodontics, Federal University of Rio de Janeiro (UFRJ), professor of Orthodontics PUCPR, Curitiba, PR - Brazil
[f] PhD in Orthodontics, São Paulo State University (Unesp), professor of Orthodontics, Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR - Brazil
[g] PhD in Orthodontics, Federal University of Rio de Janeiro (UFRJ), professor of Orthodontics, Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR - Brazil, e-mail: escamargo@uol.com.br

Abstract

The impaction of maxillary permanent canines is a frequently encountered clinical problem, especially on the palate. The causes for retarded eruption of the teeth may be either generalized or localized, and its diagnosis is based on both specific clinical and radiographic examinations. Combined periodontal-orthodontic treatment has been efficient when a prognostic and adequate technique is assured to preserve the integrity of the tissues around the canine teeth. This review illustrates clinical cases of maxillary impacted canines and procedures to bring them to normal axial inclination on the dental arch.

Keywords: Orthodontics. Canine impacted. Impaction.
Introduction and literature review

The maxillary canine has an essential role in the dental occlusion and it presents a long period of development and a complex path of eruption (1). It is estimated an incidence of 0.92% to 2.2% of impacted canines in children from seven to thirteen years of age, more common on female, on the palatine region and on the left side of the dental arch (2-4).

Although hereditary factors are associated with the presence of impacted canines, most concerns stem from local factors such as prolonged retention or early loss of the deciduous canine (1, 5-8); cystic or neoplastic formation (1, 5, 6); abnormal position of the tooth bud (8); supernumerary teeth (1, 5, 9); ankylosis and dilaceration of the root (4); and space availability on the dental arch (3, 7, 10-11). Maxillary canine impaction has also been associated with the presence of peg shaped small lateral incisors or when lateral incisor is missing. The latest implies the importance of the lateral incisor root as a guide to allow the canine to erupt into normal position (12-14).

Some clinical signs of canine impaction must be observed, such as the delay on canine eruption beyond fifteen years of age; prolonged retention of the deciduous canine; elevation of the labial or palatine mucosa; deviation of midline; presence of space between the incisors and distal inclination of the lateral incisors in relation to the midline (9, 15).

The canines usually erupt in infra-occlusion when there is not enough space on the dental arch. When located palatally, due to the thickness of the palatal cortical bone as well the dense, thick, and resistant palatal mucosa (4), they seldom erupt without surgical exposure. Such diagnosis is carried out through clinical exam and radiographies (4) such as occlusal, panoramic, teleradiographies and periapical ones (4, 16).

The periodontal-orthodontic treatment is the ultimate approach if adequate surgical technique is associated with light orthodontic forces to minimize deleterious effects on the periodontal tissues (4, 17, 18, 19). This paper is a review illustrated with clinical cases of maxillary impacted canines, besides the singular aspects used for moving the canine to its normal position.

Discussion

The treatment approach that places the maxillary canine on its right position must always be prioritized once the canine is essential to keep a functional occlusion and maintain the patient’s esthetic (5). The treatment protocol will rely on patient’s age, dental development, location and space availability on the dental arch to accommodate the tooth (1).

The periodontal procedures to expose the impacted tooth will depend on the labiolingual and mesiodistal positioning of the crown and the quantity of attached gingiva around the canine. The integrity of the periodontal tissues must not be compromised in order to avoid esthetic loss and assure a favorable prognostic to the eruption of the canine. (10, 20, 21) When it is labially positioned, extreme care should be taken not to move the tooth more labially to prevent bone deiscence, gingival migration and recession (19).

In the open technique to expose the impacted canine, the soft tissues and bone that cover the tooth are removed and the tooth is protected with surgical cement. The orthodontic attachment is then bonded to the crown of the tooth when the cement is removed. Such procedure allows observing
the direction of eruption of the tooth and selecting the most favorable force vector during traction. However, the open technique causes several damages to the periodontal tissue such as gingival recession, bone loss, decreased width of keratinized gingiva, delayed periodontal healing and gingival inflammation (21, 22) (Figures 1-3).

In the closed technique, a gingival flap is reflected exposing the crown of the impacted tooth. The bone covering the crown is removed and an orthodontic attachment is placed. The flap is then repositioned over the canine and a chain or wire is extended from the attachment into the oral cavity. This procedure allows the periodontal health to be preserved after positioning the canine on the occlusion line (22) (Figures 4 and 5).

After the surgical exposure, several methods can be used to fix the attachment to the crown of the impacted tooth. However, improvements in adhesive systems like hydrophilic adhesive resins and self-curing resin modified glass-ionomer cement made methods like wire ligation (1, 10, 17, 23) (Figure 6), orthodontic bands (9, 23, 24, 25) and perforation (2, 23, 26) (Figure 7) obsolete. Direct bonding technique involves a small area of the tooth, causes no permanent damage, decreases the risk of periodontal loss, ankylosis and external root resorption (27, 28). It is also possible to better control the traction direction by changing attachment position when needed (29). However, under extreme condition in which the canine presents a horizontal position and is very high intraosseous, a perforation of the canine cuspid edge can be carried out to allow tying a ligature wire to realize the traction (2).

Hooks, brackets, bottoms or metal mash pads bonded to the impacted canine have been used for tractioning. Ligature chains are fixed or soldered on the attachment previously to the bonding to avoid that the soft tissues recover the exposed tooth and another surgical procedure is necessary (30-33) (Figure 8).

There are many forms for aligning the upper impacted canines to its normal axial inclination such as palatine arches provided with handles in the tubes entrance (12), auxiliary arches incorporating loops superposed to the base arch (34, 35), balista spring system (19, 36), springs soldered to the main archwire (35), superelastic wires (19, 35) and cantilevers (35); removable appliances (33); use of intra or intermaxillar anchorage and the utilization of bone integrated implants and magnets (Figures

Figure 1 - Open surgical technique
Source: Research data.

Figure 2 - Periodontal aspect of the open surgical technique in lateral view
Source: Research data.

Figure 3 - Periodontal aspect of the open surgical technique in frontal view
Source: Research data.
The fixed appliance is the most commonly used once it offers greater control during traction. Besides that, in most cases, it is necessary to open space in the dental arch for the impacted canine and correct an established malocclusion (36). During the traction the base arch must be made with a heavy rectangular wire to resist the traction movement and can be associated to any anchorage reinforcement, such as transpalatal bars, Class II elastics and headgears (12, 15, 35-37).

Light and continuous forces are suggested to avoid rupture of the periodontal fibers and/or create areas of hyalinization (22) Forces ranging from twenty (34) to a hundred (29, 32) g/f must be supplied with elastic threads, elastomeric chains, springs, steel ligatures or helicoidals fixed conveniently to the orthodontic arch (4, 19). The traction force initially must improve the axial inclination of the palatally positioned canine in order not to damage the proximal teeths roots. Only after verticalization, the canine must be moved labially to align it on the arch and permit the correction of root torque (4, 10, 14) (Figures 12-14).

Although the periodontal-orthodontic approach is the most frequent treatment not all maxillary canine teeth are good for traction. In cases where the tooth presents a severe horizontal position; ankylosis; external root resorption; root dilaceration, or even when the patient does not want to undergo orthodontic treatment, extraction of the impacted canine must be considered (4, 16, 38).
Conclusions

The combined periodontal-orthodontic treatment is the best option for tractioning palatally or
labially ectopic canine. The surgical exposure of the dental crown must preserve the integrity of the periodontal tissues making the closed eruption technique the procedure of choice. The fixed appliance provides better force control, avoiding damages to the adjacent teeth. The traction force must be light and continuous, to maintain periodontal health.

References


Received: 07/19/2012
Recebido: 19/07/2012
Accepted: 08/24/2012
Aceito: 24/08/2012