Spatiotemporal variability of urban heat island: Influence of urbanization on seasonal pattern of land surface temperature in the Metropolitan Region of Belém, Brazil
Palavras-chave:
Urban heat island. Urban growth. Land surface temperature. Remote sensing. Amazonia.Resumo
Cities experience the extensive urban heat island effect (UHI), which continue to pose challenges for humanity's increasingly urban population, where tropical cities have experienced a continued and rapid urbanization process in the past few decades. We present the evolution of surface UHI and its controlling factors in the Metropolitan Region of Belém, over the last 16 years (2003–2018), which has experienced unique consolidated economic growth and urban transformation under wet equatorial climate. We incorporate MODIS and Landsat satellite data and evaluate statistical techniques for estimates the variation in the land surface temperature (LST) during two seasons: wet season and dry season. Our result revealed that the regions of fast urbanization resulted in a decrease of normalized difference vegetation index and increase of LST. In addition, annual maps showed the spatial pattern of surface UHI intensities were produced based on daytime and nighttime temperature, and the analysis result indicated that the spatial distribution of high heat capacity was closely related with the densely built-up areas. These findings are helpful for understanding the urbanization process as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Metropolitan Region of Belém.
Downloads
Referências
Agathangelidis, Cartalis, & Santamouris. (2019). Integrating Urban Form, Function, and Energy Fluxes in a Heat
Exposure Indicator in View of Intra-Urban Heat Island Assessment and Climate Change Adaptation. Climate, 7(6), 75.
doi:10.3390/cli7060075
Alexander, C. (2020). Normalised difference spectral indices and urban land cover as indicators of land surface
temperature (LST). International Journal of Applied Earth Observation and Geoinformation, 86, 102013. doi:
1016/j.jag.2019.102013
Bala, R., Prasad, R., & Pratap Yadav, V. (2019). Disaggregation of modis land surface temperature in urban areas using
improved thermal sharpening techniques. Advances in Space Research. doi:10.1016/j.asr.2019.05.004
Bauer, T. J. (2020). Interaction of Urban Heat Island Effects and Land-Sea Breezes during a New York City Heat Event.
Journal of Applied Meteorology and Climatology. doi: 10.1175/jamc-d-19-0061.1
Chakraborty, T., & Lee, X. (2019). A simplified urban-extent algorithm to characterize surface urban heat islands on a
global scale and examine vegetation control on their spatiotemporal variability. International Journal of Applied Earth
Observation and Geoinformation, 74, 269–280. doi: 10.1016/j.jag.2018.09.015
Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.
doi:10.1016/j.rse.2009.01.007
Chen, W., Zhang, Y., Pengwang, C., & Gao, W. (2017). Evaluation of urbanization dynamics and its impacts on surface
heat islands: A case study of Beijing, China. Remote Sensing, 9(5), 453, 2017. doi: 10.3390/rs9050453
Chen, J., Jin, S., & Du, P. (2020). Roles of horizontal and vertical tree canopy structure in mitigating daytime and
nighttime urban heat island effects. International Journal of Applied Earth Observation and Geoinformation, 89, 102060.
doi:10.1016/j.jag.2020.102060
Chun, B., & Guldmann, J.-M. (2018). Impact of greening on the urban heat island: Seasonal variations and mitigation
strategies. Computers, Environment and Urban Systems, 71, 165–176. doi:10.1016/j.compenvurbsys.2018.05.006
Cui, Y., Xu, X., Dong, J., & Qin, Y. (2016). Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A
Comparison of Countries at Different Developmental Phases. Sustainability, 8(8), 706. doi:10.3390/su8080706
De Oliveira, J. V., Cohen, J. C. P., Pimentel, M., Tourinho, H. L. Z., Lôbo, M. A., Sodré, G., Abdala, A. (2020). Urban climate
and environmental perception about climate change in Belém, Pará, Brazil. Urban Climate, 31, 100579, 2020. doi:
1016/j.uclim.2019.100579
Dubreuil, V., Fante, K. P., Planchon, O., Neto, J. L. S. (2018). The types of annual climates in Brazil: an application of the
classification of Köppen from 1961 to 2015. Confins-revue Franco-bresilienne De Geographie-revista Franco-brasileira
De Geografia, 23, 2018. doi:10.4000/confins.15738
Duncan, J. M. A., Boruff, B., Saunders, A., Sun, Q., Hurley, J., & Amati, M. (2018). Turning down the heat: Na enhanced
understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of The
Total Envinronmental, 656, 118–128. doi:10.1016/j.scitotenv.2018.11.223
Estoque, R. C., & Murayama, Y. (2017). Monitoring surface urban heat island formation in a tropical mountain city using
Landsat data (1987–2015). ISPRS Journal of Photogrammetry and Remote Sensing, 133, 18–29.
doi:10.1016/j.isprsjprs.2017.09.008
Ferreira, D. B. S., de Souza, E. B., Moraes, B. C., & Meira Filho, L. G. (2015). Spatial and temporal variability of rainfall in
eastern Amazon during the rainy season. The Scientific World Journal, 2015. doi:10.1155/2015/209783
Gonçalves, A., Castro Ribeiro, A., Maia, F., Nunes, L., & Feliciano, M. (2019). Influence of Green Spaces on Outdoors
Thermal Comfort—Structured Experiment in a Mediterranean Climate. Climate, 7(2), 20. doi:10.3390/cli7020020
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale
geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. doi:10.1016/j.rse.2017.06.031
Guha, S., & Govil, H. (2020). An assessment on the relationship between land surface temperature and normalized
difference vegetation index. Environment, Development and Sustainability. doi:10.1007/s10668-020-00657-6
Gusso, A., Silva, A., Boland, J., Lenz, L., & Philipp, C. (2017). Income Driven Patterns of the Urban Environment.
Sustainability, 9(2), 275. doi: 10.3390/su9020275
Hong, J.-W., Hong, J., Kwon, E. E., & Yoon, D. (2019). Temporal dynamis of urban heat island correlated with the socioeconomic development over the past half-century in Seoul, Korea. Environmental Pollution.
doi:10.1016/j.envpol.2019.07.102
Leconte, F., Bouyer, J., Claverie, R., & Pétrissans, M. (2015). Using Local Climate Zone scheme for UHI assessment:
Evaluation of the method using mobile measurements. Building and Environment, 83, 39–
doi:10.1016/j.buildenv.2014.05.005
Lee, K., Kim, Y., Sung, H. C., Ryu, J., & Jeon, S. W. (2019). Trend Analysis of Urban Heat Island Intensity According to
Urban Area Change in Asian Mega Cities. Sustainability, 12(1), 112. doi:10.3390/su12010112
Lehoczky, A., Sobrino, J., Skoković, D., & Aguilar, E. (2017). The Urban Heat Island Effect in the City of Valencia: A Case
Study for Hot Summer Days. Urban Science, 1(1), 9. doi:10.3390/urbansci1010009
Lemonsu, A., Viguié, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion
scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605.
doi:10.1016/j.uclim.2015.10.007
Levermore, G., Parkinson, J., Lee, K., Laycock, P., & Lindley, S. (2018). The increasing trend of the urban heat island
intensity. Urban Climate, 24, 360–368. doi: 10.1016/j.uclim.2017.02.004
Li, L., Zha, Y., & Zhang, J. (2020). Spatially non-stationary effect of underlying driving factors on surface urban heat
islands in global major cities. International Journal of Applied Earth Observation and Geoinformation, 90, 102131. doi:
1016/j.jag.2020.102131
Haashemi, S., Weng, Q., Darvishi, A., & Alavipanah, S. (2016). Seasonal Variations of the Surface Urban Heat Island in a
Semi-Arid City. Remote Sensing, 8(4), 352. doi:10.3390/rs8040352
Hu, D., Meng, Q., Zhang, L., & Zhang, Y. (2019). Spatial Quantitative Analysis of the Potential Driving Factors of Land
Surface Temperature in Different “Centers” of Polycentric Cities: A Case Study in Tianjin, China. Science of The Total
Environment, 135244. doi: 10.1016/j.scitotenv.2019.135244
Inostroza, L., Palme, M., & de la Barrera, F. (2016). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity
and Adaptive Capacity for Santiago de Chile. PLOS ONE, 11(9), e0162464. doi:10.1371/journal.pone.0162464
Jin, M., Li, J., Wang, C., & Shang, R. (2015). A Practical Split-Window Algorithm for Retrieving Land Surface Temperature
from Landsat-8 Data and a Case Study of an Urban Area in China. Remote Sensing, 7(4), 4371–4390.
doi:10.3390/rs70404371
Johnson, J. C., Urcuyo, J., Moen, C., & Stevens, D. R. (2019). Urban heat island conditions experienced by the Western
black widow spider (Latrodectus hesperus): Extreme heat slows development but results in behavioral
accommodations. PLOS ONE, 14(9), e0220153. doi:10.1371/journal.pone.0220153
Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban Heat Island Analysis Using the Landsat 8 Satellite Data: A Case Study
in Skopje, Macedonia. Proceedings, 2(7), 358. doi:10.3390/ecrs-2-05171
MapBiomas. Project MapBiomas—Collection 4.1 The plataform. 2020. Available online:
https://plataforma.mapbiomas.org (accessed on 12 April 2020).
Markham, B. L., & Barker, J. L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric
reflectances and at-satellite temperatures. Landsat Technical Notes, 1, 3-8.
Mathew, A., Khandelwal, S., & Kaul, N. (2016). Spatial and temporal variations of urban heat island effect and the effect
of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India.
Sustainable Cities and Society, 26, 264–277. doi: 10.1016/j.scs.2016.06.018
Meng, Q., Zhang, L., Sun, Z., Meng, F., Wang, L., & Sun, Y. (2018). Characterizing spatial and temporal trends of surface
urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sensing of
Environment, 204, 826–837. doi: 10.1016/j.rse.2017.09.019
Mohammad, P., Goswami, A., & Bonafoni, S. (2019). The Impact of the Land Cover Dynamics on Surface Urban Heat
Island Variations in Semi-Arid Cities: A Case Study in Ahmedabad City, India, Using Multi-Sensor/Source Data. Sensors,
(17), 3701. doi: 10.3390/s19173701
Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld, F., Waske, B., & Diekkrüger, B. (2018). Land surface
temperature trends as indicator of land use changes in wetlands. International Journal of Applied Earth Observation and
Geoinformation, 70, 62–71. doi:10.1016/j.jag.2018.02.002
Priyankara, P., Ranagalage, M., Dissanayake, D., Morimoto, T., & Murayama, Y. (2019). Spatial Process of Surface Urban
Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–
. Climate, 7(9), 110. doi:10.3390/cli7090110
Neiva, H., da Silva, M., & Cardoso, C. (2017). Analysis of Climate Behavior and Land Use in the City of Rio de Janeiro, RJ,
Brazil. Climate, 5(3), 52. doi:10.3390/cli5030052
Niu, L., Tang, R., Jiang, Y., & Zhou, X. (2020). Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36
Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas. Sustainability, 12(2), 478.
doi:10.3390/su12020478
Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C., & Kontoulis, N. (2017). Mortality Associated with High
Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability, 9(4),
doi:10.3390/su9040606
Peres, L. de F., Lucena, A. J. de, Rotunno Filho, O. C., & França, J. R. de A. (2018). The urban heat island in Rio de Janeiro,
Brazil, in the last 30 years using remote sensing data. International Journal of Applied Earth Observation and
Geoinformation, 64, 104–116. doi:10.1016/j.jag.2017.08.012
Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., & Valbuena, L. (2015). Land surface temperature as potential
indicator of burn severity in forest Mediterranean ecosystems. International Journal of Applied Earth Observation and
Geoinformation, 36, 1–12. doi: 10.1016/j.jag.2014.10.015
Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M., & Rao, P. S. C. (2019). Paradoxical impact of sprawling
intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. Scientific Reports, 9(1).
doi:10.1038/s41598-019-56091-w
Simwanda, M., Ranagalage, M., Estoque, R. C., & Murayama, Y. (2019). Spatial Analysis of Surface Urban Heat Islands in
Four Rapidly Growing African Cities. Remote Sensing, 11(14), 1645. doi:10.3390/rs11141645
Smoliak, B. V., Snyder, P. K., Twine, T. E., Mykleby, P. M., & Hertel, W. F. (2015). Dense Network Observations of the
Twin Cities Canopy-Layer Urban Heat Island*. Journal of Applied Meteorology and Climatology, 54(9), 1899–1917.
doi:10.1175/jamc-d-14-0239.1
Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5.
Remote Sensing of Environment, 90(4), 434–440. doi:10.1016/j.rse.2004.02.003
Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case
study of Adelaide. Frontiers of Architectural Research, 6(4), 529–538. doi:10.1016/j.foar.2017.08.001
Sussman, H. S., Raghavendra, A., & Zhou, L. (2019). Impacts of increased urbanization on surface temperature,
vegetation, and aerosols over Bengaluru, India. Remote Sensing Applications: Society and Environment, 100261.
doi:10.1016/j.rsase.2019.100261
Takebayashi, H., & Senoo, M. (2018). Analysis of the relationship between urban size and heat island intensity using
WRF model. Urban Climate, 24, 287–298. doi:10.1016/j.uclim.2016.12.003
Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2009). Landsat data to evaluate urban expansion and determine
land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509–
doi:10.1007/s12665-009-0286-z
Vahmani, P., Jones, A. D., & Patricola, C. M. (2019). Interacting implications of climate change, population dynamics, and
urban heat mitigation for future exposure to heat extremes. Environmental Research Letters, 14(8), 084051. doi:
1088/1748-9326/ab28b0
Van Hove, L. W. A., Jacobs, C. M. J., Heusinkveld, B. G., Elbers, J. A., van Driel, B. L., & Holtslag, A. A. M. (2015). Temporal
and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and
Environment, 83, 91–103. doi: 10.1016/j.buildenv.2014.08.029
Venter, Z. S., Krog, N. H., & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in
Oslo, Norway. Science of the Total Environmental, 709, 136193, 2020. doi: 10.1016/j.scitotenv.2019.136193
Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI
land surface reflectance product. Remote Sensing of Environment, 185, 46–56. doi: 10.1016/j.rse.2016.04.008
Voelkel, J., & Shandas, V. (2017). Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements,
Assessing Modeling Techniques. Climate, 5(2), 41. doi:10.3390/cli5020041
Wang, Y., Roderick, M. L., Shen, Y., & Sun, F. (2014). Attribution of satellite-observed vegetation trends in a hyper-arid
region of the Heihe River basin, Western China. Hydrology and Earth System Sciences, 18(9), 3499–3509.
doi:10.5194/hess-18-3499-2014
Wang, L., Li, W., Wang, P., Liu, X., Yang, F., & Qu, J. J. (2019). Spatiotemporal characterization of the urban sprawl and its
impacts on urban island in China with DMSP/OLS and MODIS measurements. Theoretical and Applied
Climatology. doi:10.1007/s00704-019-02822-y
Wu, X., Wang, G., Yao, R., Wang, L., Yu, D., & Gui, X. (2019). Investigating Surface Urban Heat Islands in South America
Based on MODIS Data from 2003–2016. Remote Sensing, 11(10), 1212. doi:10.3390/rs11101212
Yao, R., Wang, L., Huang, X., Zhang, W., Li, J., & Niu, Z. (2018). Interannual variations in surface urban heat island
intensity and associated drivers in China. Journal of Environmental Management, 222, 86–94.
doi:10.1016/j.jenvman.2018.05.024
Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Scientific
Reports, 7(1). doi: 10.1038/s41598-017-04242-2
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., & Sobrino, J. (2018). Satellite Remote Sensing of Surface
Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11(1), 48. doi: 10.3390/rs11010048