Spatiotemporal variability of urban heat island: Influence of urbanization on seasonal pattern of land surface temperature in the Metropolitan Region of Belém, Brazil

Jefferson Inayan de Oliveira Souto, Julia Clarinda Paiva Cohen


Cities experience the extensive urban heat island effect (UHI), which continue to pose challenges for humanity's increasingly urban population, where tropical cities have experienced a continued and rapid urbanization process in the past few decades. We present the evolution of surface UHI and its controlling factors in the Metropolitan Region of Belém, over the last 16 years (2003–2018), which has experienced unique consolidated economic growth and urban transformation under wet equatorial climate. We incorporate MODIS and Landsat satellite data and evaluate statistical techniques for estimates the variation in the land surface temperature (LST) during two seasons: wet season and dry season. Our result revealed that the regions of fast urbanization resulted in a decrease of normalized difference vegetation index and increase of LST. In addition, annual maps showed the spatial pattern of surface UHI intensities were produced based on daytime and nighttime temperature, and the analysis result indicated that the spatial distribution of high heat capacity was closely related with the densely built-up areas. These findings are helpful for understanding the urbanization process as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Metropolitan Region of Belém.


Urban heat island. Urban growth. Land surface temperature. Remote sensing. Amazonia.

Texto completo:



Agathangelidis, Cartalis, & Santamouris. (2019). Integrating Urban Form, Function, and Energy Fluxes in a Heat

Exposure Indicator in View of Intra-Urban Heat Island Assessment and Climate Change Adaptation. Climate, 7(6), 75.


Alexander, C. (2020). Normalised difference spectral indices and urban land cover as indicators of land surface

temperature (LST). International Journal of Applied Earth Observation and Geoinformation, 86, 102013. doi:


Bala, R., Prasad, R., & Pratap Yadav, V. (2019). Disaggregation of modis land surface temperature in urban areas using

improved thermal sharpening techniques. Advances in Space Research. doi:10.1016/j.asr.2019.05.004

Bauer, T. J. (2020). Interaction of Urban Heat Island Effects and Land-Sea Breezes during a New York City Heat Event.

Journal of Applied Meteorology and Climatology. doi: 10.1175/jamc-d-19-0061.1

Chakraborty, T., & Lee, X. (2019). A simplified urban-extent algorithm to characterize surface urban heat islands on a

global scale and examine vegetation control on their spatiotemporal variability. International Journal of Applied Earth

Observation and Geoinformation, 74, 269–280. doi: 10.1016/j.jag.2018.09.015

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat

MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.


Chen, W., Zhang, Y., Pengwang, C., & Gao, W. (2017). Evaluation of urbanization dynamics and its impacts on surface

heat islands: A case study of Beijing, China. Remote Sensing, 9(5), 453, 2017. doi: 10.3390/rs9050453

Chen, J., Jin, S., & Du, P. (2020). Roles of horizontal and vertical tree canopy structure in mitigating daytime and

nighttime urban heat island effects. International Journal of Applied Earth Observation and Geoinformation, 89, 102060.


Chun, B., & Guldmann, J.-M. (2018). Impact of greening on the urban heat island: Seasonal variations and mitigation

strategies. Computers, Environment and Urban Systems, 71, 165–176. doi:10.1016/j.compenvurbsys.2018.05.006

Cui, Y., Xu, X., Dong, J., & Qin, Y. (2016). Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A

Comparison of Countries at Different Developmental Phases. Sustainability, 8(8), 706. doi:10.3390/su8080706

De Oliveira, J. V., Cohen, J. C. P., Pimentel, M., Tourinho, H. L. Z., Lôbo, M. A., Sodré, G., Abdala, A. (2020). Urban climate

and environmental perception about climate change in Belém, Pará, Brazil. Urban Climate, 31, 100579, 2020. doi:


Dubreuil, V., Fante, K. P., Planchon, O., Neto, J. L. S. (2018). The types of annual climates in Brazil: an application of the

classification of Köppen from 1961 to 2015. Confins-revue Franco-bresilienne De Geographie-revista Franco-brasileira

De Geografia, 23, 2018. doi:10.4000/confins.15738

Duncan, J. M. A., Boruff, B., Saunders, A., Sun, Q., Hurley, J., & Amati, M. (2018). Turning down the heat: Na enhanced

understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of The

Total Envinronmental, 656, 118–128. doi:10.1016/j.scitotenv.2018.11.223

Estoque, R. C., & Murayama, Y. (2017). Monitoring surface urban heat island formation in a tropical mountain city using

Landsat data (1987–2015). ISPRS Journal of Photogrammetry and Remote Sensing, 133, 18–29.


Ferreira, D. B. S., de Souza, E. B., Moraes, B. C., & Meira Filho, L. G. (2015). Spatial and temporal variability of rainfall in

eastern Amazon during the rainy season. The Scientific World Journal, 2015. doi:10.1155/2015/209783

Gonçalves, A., Castro Ribeiro, A., Maia, F., Nunes, L., & Feliciano, M. (2019). Influence of Green Spaces on Outdoors

Thermal Comfort—Structured Experiment in a Mediterranean Climate. Climate, 7(2), 20. doi:10.3390/cli7020020

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale

geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. doi:10.1016/j.rse.2017.06.031

Guha, S., & Govil, H. (2020). An assessment on the relationship between land surface temperature and normalized

difference vegetation index. Environment, Development and Sustainability. doi:10.1007/s10668-020-00657-6

Gusso, A., Silva, A., Boland, J., Lenz, L., & Philipp, C. (2017). Income Driven Patterns of the Urban Environment.

Sustainability, 9(2), 275. doi: 10.3390/su9020275

Hong, J.-W., Hong, J., Kwon, E. E., & Yoon, D. (2019). Temporal dynamis of urban heat island correlated with the socioeconomic development over the past half-century in Seoul, Korea. Environmental Pollution.


Leconte, F., Bouyer, J., Claverie, R., & Pétrissans, M. (2015). Using Local Climate Zone scheme for UHI assessment:

Evaluation of the method using mobile measurements. Building and Environment, 83, 39–


Lee, K., Kim, Y., Sung, H. C., Ryu, J., & Jeon, S. W. (2019). Trend Analysis of Urban Heat Island Intensity According to

Urban Area Change in Asian Mega Cities. Sustainability, 12(1), 112. doi:10.3390/su12010112

Lehoczky, A., Sobrino, J., Skoković, D., & Aguilar, E. (2017). The Urban Heat Island Effect in the City of Valencia: A Case

Study for Hot Summer Days. Urban Science, 1(1), 9. doi:10.3390/urbansci1010009

Lemonsu, A., Viguié, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion

scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605.


Levermore, G., Parkinson, J., Lee, K., Laycock, P., & Lindley, S. (2018). The increasing trend of the urban heat island

intensity. Urban Climate, 24, 360–368. doi: 10.1016/j.uclim.2017.02.004

Li, L., Zha, Y., & Zhang, J. (2020). Spatially non-stationary effect of underlying driving factors on surface urban heat

islands in global major cities. International Journal of Applied Earth Observation and Geoinformation, 90, 102131. doi:


Haashemi, S., Weng, Q., Darvishi, A., & Alavipanah, S. (2016). Seasonal Variations of the Surface Urban Heat Island in a

Semi-Arid City. Remote Sensing, 8(4), 352. doi:10.3390/rs8040352

Hu, D., Meng, Q., Zhang, L., & Zhang, Y. (2019). Spatial Quantitative Analysis of the Potential Driving Factors of Land

Surface Temperature in Different “Centers” of Polycentric Cities: A Case Study in Tianjin, China. Science of The Total

Environment, 135244. doi: 10.1016/j.scitotenv.2019.135244

Inostroza, L., Palme, M., & de la Barrera, F. (2016). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity

and Adaptive Capacity for Santiago de Chile. PLOS ONE, 11(9), e0162464. doi:10.1371/journal.pone.0162464

Jin, M., Li, J., Wang, C., & Shang, R. (2015). A Practical Split-Window Algorithm for Retrieving Land Surface Temperature

from Landsat-8 Data and a Case Study of an Urban Area in China. Remote Sensing, 7(4), 4371–4390.


Johnson, J. C., Urcuyo, J., Moen, C., & Stevens, D. R. (2019). Urban heat island conditions experienced by the Western

black widow spider (Latrodectus hesperus): Extreme heat slows development but results in behavioral

accommodations. PLOS ONE, 14(9), e0220153. doi:10.1371/journal.pone.0220153

Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban Heat Island Analysis Using the Landsat 8 Satellite Data: A Case Study

in Skopje, Macedonia. Proceedings, 2(7), 358. doi:10.3390/ecrs-2-05171

MapBiomas. Project MapBiomas—Collection 4.1 The plataform. 2020. Available online: (accessed on 12 April 2020).

Markham, B. L., & Barker, J. L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric

reflectances and at-satellite temperatures. Landsat Technical Notes, 1, 3-8.

Mathew, A., Khandelwal, S., & Kaul, N. (2016). Spatial and temporal variations of urban heat island effect and the effect

of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India.

Sustainable Cities and Society, 26, 264–277. doi: 10.1016/j.scs.2016.06.018

Meng, Q., Zhang, L., Sun, Z., Meng, F., Wang, L., & Sun, Y. (2018). Characterizing spatial and temporal trends of surface

urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sensing of

Environment, 204, 826–837. doi: 10.1016/j.rse.2017.09.019

Mohammad, P., Goswami, A., & Bonafoni, S. (2019). The Impact of the Land Cover Dynamics on Surface Urban Heat

Island Variations in Semi-Arid Cities: A Case Study in Ahmedabad City, India, Using Multi-Sensor/Source Data. Sensors,

(17), 3701. doi: 10.3390/s19173701

Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld, F., Waske, B., & Diekkrüger, B. (2018). Land surface

temperature trends as indicator of land use changes in wetlands. International Journal of Applied Earth Observation and

Geoinformation, 70, 62–71. doi:10.1016/j.jag.2018.02.002

Priyankara, P., Ranagalage, M., Dissanayake, D., Morimoto, T., & Murayama, Y. (2019). Spatial Process of Surface Urban

Heat Island in Rapidly Growing Seoul Metropolitan Area for Sustainable Urban Planning Using Landsat Data (1996–

. Climate, 7(9), 110. doi:10.3390/cli7090110

Neiva, H., da Silva, M., & Cardoso, C. (2017). Analysis of Climate Behavior and Land Use in the City of Rio de Janeiro, RJ,

Brazil. Climate, 5(3), 52. doi:10.3390/cli5030052

Niu, L., Tang, R., Jiang, Y., & Zhou, X. (2020). Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36

Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas. Sustainability, 12(2), 478.


Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C., & Kontoulis, N. (2017). Mortality Associated with High

Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability, 9(4),


Peres, L. de F., Lucena, A. J. de, Rotunno Filho, O. C., & França, J. R. de A. (2018). The urban heat island in Rio de Janeiro,

Brazil, in the last 30 years using remote sensing data. International Journal of Applied Earth Observation and

Geoinformation, 64, 104–116. doi:10.1016/j.jag.2017.08.012

Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., & Valbuena, L. (2015). Land surface temperature as potential

indicator of burn severity in forest Mediterranean ecosystems. International Journal of Applied Earth Observation and

Geoinformation, 36, 1–12. doi: 10.1016/j.jag.2014.10.015

Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M., & Rao, P. S. C. (2019). Paradoxical impact of sprawling

intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. Scientific Reports, 9(1).


Simwanda, M., Ranagalage, M., Estoque, R. C., & Murayama, Y. (2019). Spatial Analysis of Surface Urban Heat Islands in

Four Rapidly Growing African Cities. Remote Sensing, 11(14), 1645. doi:10.3390/rs11141645

Smoliak, B. V., Snyder, P. K., Twine, T. E., Mykleby, P. M., & Hertel, W. F. (2015). Dense Network Observations of the

Twin Cities Canopy-Layer Urban Heat Island*. Journal of Applied Meteorology and Climatology, 54(9), 1899–1917.


Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5.

Remote Sensing of Environment, 90(4), 434–440. doi:10.1016/j.rse.2004.02.003

Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its correlations to urban greenery: A case

study of Adelaide. Frontiers of Architectural Research, 6(4), 529–538. doi:10.1016/j.foar.2017.08.001

Sussman, H. S., Raghavendra, A., & Zhou, L. (2019). Impacts of increased urbanization on surface temperature,

vegetation, and aerosols over Bengaluru, India. Remote Sensing Applications: Society and Environment, 100261.


Takebayashi, H., & Senoo, M. (2018). Analysis of the relationship between urban size and heat island intensity using

WRF model. Urban Climate, 24, 287–298. doi:10.1016/j.uclim.2016.12.003

Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2009). Landsat data to evaluate urban expansion and determine

land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509–


Vahmani, P., Jones, A. D., & Patricola, C. M. (2019). Interacting implications of climate change, population dynamics, and

urban heat mitigation for future exposure to heat extremes. Environmental Research Letters, 14(8), 084051. doi:


Van Hove, L. W. A., Jacobs, C. M. J., Heusinkveld, B. G., Elbers, J. A., van Driel, B. L., & Holtslag, A. A. M. (2015). Temporal

and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and

Environment, 83, 91–103. doi: 10.1016/j.buildenv.2014.08.029

Venter, Z. S., Krog, N. H., & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in

Oslo, Norway. Science of the Total Environmental, 709, 136193, 2020. doi: 10.1016/j.scitotenv.2019.136193

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI

land surface reflectance product. Remote Sensing of Environment, 185, 46–56. doi: 10.1016/j.rse.2016.04.008

Voelkel, J., & Shandas, V. (2017). Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements,

Assessing Modeling Techniques. Climate, 5(2), 41. doi:10.3390/cli5020041

Wang, Y., Roderick, M. L., Shen, Y., & Sun, F. (2014). Attribution of satellite-observed vegetation trends in a hyper-arid

region of the Heihe River basin, Western China. Hydrology and Earth System Sciences, 18(9), 3499–3509.


Wang, L., Li, W., Wang, P., Liu, X., Yang, F., & Qu, J. J. (2019). Spatiotemporal characterization of the urban sprawl and its

impacts on urban island in China with DMSP/OLS and MODIS measurements. Theoretical and Applied

Climatology. doi:10.1007/s00704-019-02822-y

Wu, X., Wang, G., Yao, R., Wang, L., Yu, D., & Gui, X. (2019). Investigating Surface Urban Heat Islands in South America

Based on MODIS Data from 2003–2016. Remote Sensing, 11(10), 1212. doi:10.3390/rs11101212

Yao, R., Wang, L., Huang, X., Zhang, W., Li, J., & Niu, Z. (2018). Interannual variations in surface urban heat island

intensity and associated drivers in China. Journal of Environmental Management, 222, 86–94.


Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Scientific

Reports, 7(1). doi: 10.1038/s41598-017-04242-2

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., & Sobrino, J. (2018). Satellite Remote Sensing of Surface

Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11(1), 48. doi: 10.3390/rs11010048


  • Não há apontamentos.