Agregação de dados para análise da caminhabilidade: um estudo empírico

Autores

  • Ana Luiza Favarão Leão Universidade Estadual de Londrina e Universidade Estadual de Maringá
  • Leticia Cabrera Universidade Estadual de Londrina e Universidade Estadual de Maringá
  • Mariana Ragassi Urbano Universidade Estadual de Londrina
  • Milena Kanashiro Universidade Estadual de Londrina

Palavras-chave:

Caminhabilidade. Ambiente Construído. Agregação de Dados.

Resumo

Uma das estratégias para avaliar a relação entre o ambiente construído e comportamentos ativos é a caminhabilidade, definida como a medida em que o ambiente construído apoia e incentiva a caminhada. Considerando tal cenário, a agregação de dados é fundamental, porém, ainda existem desafios metodológicos e uma latente falta de evidências experimentais sobre as unidades de agregação adequadas para a caminhabilidade no Brasil. Desta forma, o objetivo desta pesquisa é analisar unidades espaciais de agregação de dados para a mensuração objetiva da caminhabilidade e suas variáveis individuais no contexto de uma cidade brasileira. A partir da sistematização da caminhabilidade objetiva, através de um índice, em diferentes unidades de agregação de dados, e.g.: setor censitário e buffers de rede com raios de 200, 400 e 600m, uma análise de variabilidade e dispersão de dados foi conduzida. Inferiu-se dos resultados estatísticos que buffers de 400 e 600m, dimensões mais próximas de distâncias caminháveis médias, foram mais eficientes. Este estudo contribuiu metodologicamente para o avanço de abordagens contemporâneas para a compreensão da caminhabilidade por meio da análise quantitativa.

Downloads

Não há dados estatísticos.

Referências

Associação Nacional de Transportes Públicos – ANTP. (2018). Sistema de Informações da Mobilidade Urbana: relatório geral 2016. ANTP, 1(1), 1-110. Recuperado em 29 de novembro de 2019, de http://files.antp.org.br/simob/simob-2016-v6.pdf

Barczak, R., & Duarte, F. (2012). Impactos ambientais da mobilidade urbana: cinco categorias de medidas mitigadoras. urbe. Revista Brasileira de Gestão Urbana, 4(1), 13-32. http://dx.doi.org/10.1590/S2175-33692012000100002.

Bauman, A. E., Reis, R. S., Sallis, J. F., Wells, J. C., Loos, R. J. F., & Martin, B. W. (2012). Correlates of physical activity: why are some people physically active and others not? Lancet, 380(9838), 258-271. http://dx.doi.org/10.1016/S0140-6736(12)60735-1. PMid:22818938.

Brownson, R. C., Hoehner, C. M., Day, K., Forsyth, A., & Sallis, J. F. (2009). Measuring the built environment for physical activity: state of the science. American Journal of Preventive Medicine, 36(4, Supl), S99-S123.e12. http://dx.doi.org/10.1016/j.amepre.2009.01.005.

Campoli, J. (2012). Made for walking: density and neighborhood form (2nd ed.). Cambridge: Lincoln Institute of Land Policy.

Carmona, M., Heath, T., Tiesdell, S., & Oc, T. (2010). Public places, urban spaces: the dimensions of urban design. Oxford: Architectural Press.

Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: density, diversity, and design. Transportation Research Part D, Transport and Environment, 2(3), 199-219. http://dx.doi.org/10.1016/S1361-9209(97)00009-6.

Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009). Influences of built environments on walking and cycling: lessons from Bogotá. International Journal of Sustainable Transportation, 3(4), 203-226. http://dx.doi.org/10.1080/15568310802178314.

Cockings, S., & Martin, D. (2005). Zone design for environment and health studies using pre-aggregated data. Social Science & Medicine, 60(12), 2729-2742. http://dx.doi.org/10.1016/j.socscimed.2004.11.005. PMid:15820583.

Cochran, W. G., & Wiley, J. (1977). Sampling techniques (3rd ed.). New York: John Wiley & Sons.

Christian, H., Giles-Corti, B., Knuiman, M., Timperio, A., & Foster, S. (2011). The influence of the built environment, social environment and health behaviors on body mass index: results from RESIDE. Preventive Medicine, 53(1-2), 57-60. http://dx.doi.org/10.1016/j.ypmed.2011.05.004. PMid:21609730.

Diez Roux, A. V. (2001). Investigating neighborhood and area effects on health. American Journal of Public Health, 91(11), 1783-1789. http://dx.doi.org/10.2105/AJPH.91.11.1783. PMid:11684601.

Ding, D., & Gebel, K. (2012). Built environment, physical activity, and obesity: what have we learned from reviewing the literature? Health & Place, 18(1), 100-105. http://dx.doi.org/10.1016/j.healthplace.2011.08.021. PMid:21983062.

Doescher, M. P., Lee, C., Berke, E. M., Adachi-mejia, A. M., Lee, C., Stewart, O., Patterson, D. G., Hurvitz, P. M., Carlos, H. A., Duncan, G. E., & Moudon, A. V. (2014). The built environment and utilitarian walking in small U. S. towns. Preventive Medicine, 69, 80-86. http://dx.doi.org/10.1016/j.ypmed.2014.08.027. PMid:25199732.

Ellis, G., Hunter, R., Tully, M. A., Donnelly, M., Kelleher, L., & Kee, F. (2016). Connectivity and physical activity: using footpath networks to measure the walkability of built environments. Environment and Planning. B, Planning & Design, 43(1), 130-151. http://dx.doi.org/10.1177/0265813515610672.

Ewing, R., & Cervero, R. (2010). Travel and the built environment. Journal of the American Planning Association, 76(3), 265-294. http://dx.doi.org/10.1080/01944361003766766.

Feltz, C. J., & Miller, G. E. (1996). An asymptotic test for the equality of coefficients of variation from k populations. Statistics in Medicine, 15(6), 647-658. http://dx.doi.org/10.1002/(SICI)1097-0258(19960330)15:6<647::AID-SIM184>3.0.CO;2-P. PMid:8731006.

Flowerdew, R., Manley, D. J., & Sabel, C. E. (2008). Neighbourhood effects on health: does it matter where you draw the boundaries? Social Science & Medicine, 66(6), 1241-1255. http://dx.doi.org/10.1016/j.socscimed.2007.11.042. PMid:18177988.

Frank, L. D., Fox, E. H., Ulmer, J. M., Chapman, J. E., Kershaw, S. E., Sallis, J. F., Conway, T. L., Cerin, E., Cain, K. L., Adams, M. A., Smith, G. R., Hinckson, E., Mavoa, S., Christiansen, L. B., Hino, A. A., Lopes, A. A., & Schipperijn, J. (2017). International comparison of observation-specific spatial buffers: maximizing the ability to estimate physical activity. International Journal of Health Geographics, 16(1), 1-13. http://dx.doi.org/10.1186/s12942-017-0077-9. PMid:28114945.

Frank, L. D., Sallis, J. F., Conway, T. L., Chapman, J. E., Saelens, B. E., & Bachman, W. (2006). Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. Journal of the American Planning Association, 72(1), 75-87. http://dx.doi.org/10.1080/01944360608976725.

Frank, L. D., Sallis, J. F., Saelens, B. E., Leary, L., Cain, L., Conway, T. L., & Hess, P. M. (2010). The development of a walkability index: application to the neighborhood quality of life study. British Journal of Sports Medicine, 44(13), 924-933. http://dx.doi.org/10.1136/bjsm.2009.058701. PMid:19406732.

Frank, L., Kavage, S., & Devlin, A. (2012). Health and the built environment: a review (21 p.). Washington: Urban Design 4 Health. Recuperado em 29 de novembro de 2019, de http://www.wma.net/en/20activities/30publichealth/30healthenvironment/Built_Env-Final_Report-August2012.pdf

Gebel, K., Bauman, A. E., & Petticrew, M. (2007). The Physical environment and physical activity: a critical appraisal of review articles. American Journal of Preventive Medicine, 32(5), 361-369. http://dx.doi.org/10.1016/j.amepre.2007.01.020. PMid:17478260.

Gehl, J. (2013). Cidade para pessoas (2. ed.). São Paulo: Perspectiva.

Groat, L., & Wang, D. (2013). Architectural research methods. New Jersey: John Wiley & Sons.

Hino, A. A. F., Rech, C. R., Gonçalves, P. B., Hallal, P. C., & Reis, R. S. (2012). Projeto Espaços de Curitiba, Brasil: aplicabilidade de métodos mistos de pesquisa e informações georreferenciadas em estudos sobre atividade física e ambiente construído. Revista Panamericana de Salud Publica, 32(3), 226-233. http://dx.doi.org/10.1590/S1020-49892012000900008. PMid:23183563.

Hino, A. A. F., Reis, R. S., & Florindo, A. A. (2010). Ambiente construído e atividade física: uma breve revisão dos métodos de avaliação. Revista Brasileira de Cineantropometria & Desempenho Humano, 12(5), 387-394. http://dx.doi.org/10.5007/1980-0037.2010v12n5p387.

Houston, D. (2014). Implications of the modifiable areal unit problem for assessing built environment correlates of moderate and vigorous physical activity. Applied Geography, 50, 40-47. http://dx.doi.org/10.1016/j.apgeog.2014.02.008.

Humpel, N., Owen, N., & Leslie, E. (2002). Environmental factors associated with adults’ participation in physical activity: a review. American Journal of Preventive Medicine, 22(3), 188-199. http://dx.doi.org/10.1016/S0749-3797(01)00426-3. PMid:11897464.

Instituto Brasileiro de Geografia e Estatística – IBGE. (2010a). Bases e referenciais: malhas digitais: censo de 2010. Recuperado em 15 de Janeiro de 2018, de https://mapas.ibge.gov.br/bases-e-referenciais/bases-cartograficas/malhas-digitais

Instituto Brasileiro de Geografia e Estatística – IBGE. (2010b). Panorama da cidade de Rolândia. Recuperado em 15 de Janeiro de 2018, de https://cidades.ibge.gov.br/brasil/pr/rolandia/panorama

Instituto Paranaense de Desenvolvimento Econômico e Social – IPARDES. (2018). Caderno estatístico município: município de Rolândia. Rolândia.

Instituto Tecnologia Desenvolvimento Econômico Social – ITEDES. (2018). PlanMob: plano municipal de mobilidade urbana de Rolândia-PR. Rolândia.

Kelley, M. K. (2018). MBESS: the MBESS R Package R Package Version 4.4.3. Vienna: R Foundation for Statistical Computing. Recuperado em 21 de Novembro de 2018, de https://cran.r-project.org/package=MBESS

Kim, S., Park, S., & Lee, J. S. (2014). Meso- or micro-scale? Environmental factors influencing pedestrian satisfaction. Transportation Research Part D, Transport and Environment, 30, 10-20. http://dx.doi.org/10.1016/j.trd.2014.05.005.

King, A. C., Sallis, J. F., Frank, L. D., Saelens, B. E., Cain, K., Conway, T. L., Chapman, J. E., Ahn, D. K., & Kerr, J. (2011). Aging in neighborhoods differing in walkability and income: associations with physical activity and obesity in older adults. Associations with Physical Activity and Obesity in Older Adults, 73(10), 1525-1533. http://dx.doi.org/10.1016/j.socscimed.2011.08.032. PMid:21975025.

Leslie, E., Cerin, E., duToit, L., Owen, N., & Bauman, A. (2007). Objectively assessing ‘walkability’ of local communities: using gis to identify the relevant environmental attributes. In P. C. Lai, & A. S. H. Mak (Eds.), Gis for health and the environment: development in the Asia-Pacific region (pp. 90-104). Berlin: Springer. http://dx.doi.org/10.1007/978-3-540-71318-0_7.

Lotfi, S., & Koohsari, M. J. (2011). Neighborhood walkability in a city within a developing country. Journal of Urban Planning and Development, 137(4), 402-408. http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000085.

Marwick, B., & Krishnamoorthy, K. (2018). cvequality: tests for the equality of coefficients of variation from multiple groups. Vienna: R Foundation for Statistical Computing.

Mayne, D. J., Morgan, G. G., Willmore, A., Rose, N., Jalaludin, B., Bambrick, H., & Bauman, A. (2013). An objective index of walkability for research and planning in the Sydney Metropolitan Region of New South Wales, Australia: an ecological study. International Journal of Health Geographics, 12, 61. http://dx.doi.org/10.1186/1476-072X-12-61. PMid:24365133.

Mitra, R., & Buliung, R. N. (2012). Built environment correlates of active school transportation: neighborhood and the modifiable areal unit problem. Journal of Transport Geography, 20(1), 51-61. http://dx.doi.org/10.1016/j.jtrangeo.2011.07.009.

Moudon, A. V., Huang, R., Stewart, O. T., Cohen-Cline, H., Noonan, C., Hurvitz, P. M., & Duncan, G. E. (2019). Probabilistic walking models using built environment and sociodemographic predictors. Population Health Metrics, 17(1), 7. http://dx.doi.org/10.1186/s12963-019-0186-8. PMid:31159824.

Ng, S. W., & Popkin, B. M. (2012). Time use and physical activity: a shift away from movement across the globe. Obesity Reviews, 13(8), 659-680. http://dx.doi.org/10.1111/j.1467-789X.2011.00982.x. PMid:22694051.

Oliver, L. N., Schuurman, N., & Hall, A. W. (2007). Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. International Journal of Health Geographics, 6(1), 41. http://dx.doi.org/10.1186/1476-072X-6-41. PMid:17883870.

Openshaw, S. (1984). The modifiable areal unit problem. Journal of the American Statistical Association, 29(185), 169. http://dx.doi.org/10.2307/2277827.

Owen, N., Cerin, E., Leslie, E., duToit, L., Coffee, N., Frank, L. D., Bauman, A. E., Hugo, G., Saelens, B. E., & Sallis, J. F. (2007). Neighborhood walkability and the walking behavior of Australian adults. American Journal of Preventive Medicine, 33(5), 387-395. http://dx.doi.org/10.1016/j.amepre.2007.07.025. PMid:17950404.

Park, S., Choi, K., & Lee, J. S. (2015). To walk or not to walk: testing the effect of path walkability on transit users’ access mode choices to the station. International Journal of Sustainable Transportation, 9(8), 529-541. http://dx.doi.org/10.1080/15568318.2013.825036.

Perchoux, C., Chaix, B., Brondeel, R., & Kestens, Y. (2016). Residential buffer, perceived neighborhood, and individual activity space: New refinements in the definition of exposure areas - The RECORD Cohort Study. Health & Place, 40, 116-122. http://dx.doi.org/10.1016/j.healthplace.2016.05.004. PMid:27261634.

R Core Team (2018). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Recuperado em 29 de novembro de 2019, de http://www.r-project.org/

Reis, R. S., Hino, A. A. F., Rech, C. R., Kerr, J., & Hallal, P. C. (2013). Walkability and physical activity. American Journal of Preventive Medicine, 45(3), 269-275. http://dx.doi.org/10.1016/j.amepre.2013.04.020. PMid:23953352.

Riva, M., Apparicio, P., Gauvin, L., & Brodeur, J. M. (2008). Establishing the soundness of administrative spatial units for operationalising the active living potential of residential environments: an exemplar for designing optimal zones. International Journal of Health Geographics, 7(1), 1-13. http://dx.doi.org/10.1186/1476-072X-7-43. PMid:18671855.

Sabel, C. E., Kihal, W., Bard, D., & Weber, C. (2013). Creation of synthetic homogeneous neighbourhoods using zone design algorithms to explore relationships between asthma and deprivation in Strasbourg, France. Social Science & Medicine, 91, 110-121. http://dx.doi.org/10.1016/j.socscimed.2012.11.018. PMid:23332654.

Saelens, B. E., & Handy, S. L. (2008). Built environment correlates of walking. Medicine and Science in Sports and Exercise, 40(7, Supl), S550-S566. http://dx.doi.org/10.1249/MSS.0b013e31817c67a4. PMid:18562973.

Saelens, B. E., Sallis, J. F., & Frank, L. D. (2003). Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of Behavioral Medicine, 25(2), 80-91. http://dx.doi.org/10.1207/S15324796ABM2502_03. PMid:12704009.

Sallis, J. F. (2009). Measuring physical activity environments: a brief history. American Journal of Preventive Medicine, 36(4, Supl), S86-S92. http://dx.doi.org/10.1016/j.amepre.2009.01.002. PMid:19285214.

Sallis, J. F., Bauman, A., & Pratt, M. (1998). Environmental and policy interventions to promote physical activity. American Journal of Preventive Medicine, 15(4), 379-397. http://dx.doi.org/10.1016/S0749-3797(98)00076-2. PMid:9838979.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Shashank, A., & Schuurman, N. (2019). Unpacking walkability indices and their inherent assumptions. Health & Place, 55, 145-154. http://dx.doi.org/10.1016/j.healthplace.2018.12.005.

Southworth, M. (2005). Designing the walkable city. Journal of Urban Planning and Development, 131(4), 246-257. http://dx.doi.org/10.1061/(ASCE)0733-9488(2005)131:4(246).

Vieira, S. (2008). Introdução à bioestatística (4. ed.). Rio de Janeiro: Elsevier.

Wang, H., & Yang, Y. (2019). Neighbourhood walkability: a review and bibliometric analysis. Cities, 93, 43-61. http://dx.doi.org/10.1016/j.cities.2019.04.015.

Yin, R. K. (2001). Estudo de caso: planejamento e métodos (2. ed.). São Paulo: Bookman Companhia.

Zhang, M., & Kukadia, N. (2005). Metrics of urban form and the modifiable areal unit problem. Transportation Research Record: Journal of the Transportation Research Board, 1902(1), 71-79. http://dx.doi.org/10.1177/0361198105190200109.

Downloads

Como Citar

Leão, A. L. F., Cabrera, L., Urbano, M. R., & Kanashiro, M. (2020). Agregação de dados para análise da caminhabilidade: um estudo empírico. Revista Brasileira De Gestão Urbana, 12. Recuperado de https://periodicos.pucpr.br/Urbe/article/view/26890

Edição

Seção

Artigos