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Abstract 

Cities experience the extensive urban heat island effect (UHI), which continue to pose challenges for 

humanity's increasingly urban population, where tropical cities have experienced a continued and rapid 

urbanization process in the past few decades. We present the evolution of surface UHI and its controlling 

factors in the Metropolitan Region of Belém, over the last 16 years (2003–2018), which has experienced 

unique consolidated economic growth and urban transformation under wet equatorial climate. We 

incorporate MODIS and Landsat satellite data and evaluate statistical techniques for estimates the 

variation in the land surface temperature (LST) during two seasons: wet season and dry season. Our 

result revealed that the regions of fast urbanization resulted in a decrease of normalized difference 

vegetation index and increase of LST. In addition, annual maps showed the spatial pattern of surface UHI 

intensities were produced based on daytime and nighttime temperature, and the analysis result 

indicated that the spatial distribution of high heat capacity was closely related with the densely built-up 

areas. These findings are helpful for understanding the urbanization process as well as urban ecology, 

which both have significant implications for urban planning and minimize the potential environmental 

impacts of urbanization in Metropolitan Region of Belém.  
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Resumo 

As cidades experimentam um extenso efeito das ilhas de calor urbano, que continua a representar desafios para a 

população cada vez mais urbana, onde cidades tropicais têm apresentado um processo de urbanização contínuo 

e rápido nas últimas décadas. Apresentamos os principais fatores e evolução da intensidade da UHI na Região 

Metropolitana de Belém nos últimos 16 anos (2003–2018), que experimentaram um crescimento econômico 

consolidado e uma transformação urbana sob o clima equatorial úmido. Utilizamos dados de satélite MODIS e 

Landsat, e avaliamos técnicas estatísticas para estimar a variação de temperatura da superfície terrestre 

durante duas estações: chuvoso e menos chuvoso. Os resultados revelaram que as regiões de intensa urbanização 

resultaram em uma diminuição do índice de vegetação por diferença normalizada e aumento da temperatura da 

superfície terrestre. Além disso, os mapas anuais do padrão espacial da intensidade UHI sobre a superfície 

baseados na temperatura diurna e noturna, indicaram que a distribuição do intenso calor estava intimamente 

relacionada às áreas densamente construídas. Essas descobertas são úteis para entender o processo de 

urbanização e o processo ecológico urbano, que têm implicações significativas para o planejamento urbano e 

minimizam os possíveis impactos ambientais da urbanização na Região Metropolitana de Belém. 

 

Palavras-chave: Ilha de calor urbano. Expansão urbana. Temperatura da superfície terrestre. 

Sensoriamento remoto. Amazônia. 

Introduction 

Urbanization leads to a dramatic change in the underlying surface structure, properties, and spatial 

distribution of a city, such as a reduction in green areas and a corresponding increase in impervious areas 

(Cui et al., 2016; Lee et al., 2019). These changes increase the temperature difference between urban and 

surrounding non-urbanized areas, or more specifically, indicates that an urban area is significantly warmer 

than its surrounding rural areas due to artificial land cover and anthropogenic heat (Chakraborty and Lee, 

2019), which is known as the Urban Heat Island (UHI). Furthermore, UHI is an important issue for urban 

planning and environment improvement as it has several implications for energy demand (2), climate 

adaptation policies (3), public health (4), and heat-related mortality (5) (Paravantis et al., 2017; 

Agathangelidis et al., 2019). In its broad sense, UHI that is proportional to the degree of urbanization and is 

closely related to urban climatology, thermal environment, and the quality of human life (Chen et al., 2017; 

Vahmani et al., 2019). In order to have a comprehensive understanding of the process of urbanization and 

to evaluate its environmental influence, it is necessary and indispensable to monitor and analyze the 

dynamics of urbanization in countries. 

Traditionally, to address these problems, meteorological departments in many countries regularly 

measure air temperature at point locations (Shreevastava et al., 2019). However, the complex spatial 

arrangement of surfaces in urban areas, makes it difficult, or even impossible, to estimate the local 

variations in surface temperature based on these data alone (Hu et al., 2019). In this way, with the 

development of remote sensing technology, satellite imagery have been used to estimate Land Surface 

Temperature (LST), the main driver of air temperature, and to map the spatial distribution of LST, although 

many studies have been showed the air temperature can be higher or lower than surface temperature 

depending on various factors such as the presence and direction of wind, insolation and surface 

characteristics (Lehoczky et al., 2017; Zhou et al., 2018). Nevertheless, LST can provide an estimate of the 

spatial pattern of temperature over large areas (Mathew et al., 2016). 

Thus, the UHI is observed from air temperature measurements within the urban area and the 

surrounding rural areas based on LST from remote sensors because of high spatial and temporal resolution, 

free availability, and easy access (Bala et al., 2019). Surface Urban Heat Island (SUHI), namely remotely 

sensed urban heat island, is usually visualized as a dome of hot air over urban areas with the help of far 

infrared data that allow to retrieve LST, which they “see” the spatial patterns of upwelling thermal radiance 

received by the remote sensors (Estoque & Murayama, 2017). This way, LST is the important parameter to 
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analyze urban climatology and is the conventional method to derive the SUHI (Takebayashi and Senoo, 

2018; Levermore et al., 2018). It has a direct effect on the air temperature and mean radiant temperature, 

which relate directly to the thermal environment, and integrating satellite imagery offers numerous 

opportunities to diagnose potential contributions of physical landscape features that create SUHI (Zhou et 

al., 2018). 

For instance, the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra and Aqua, 

which provides daily LST data with high temporal (four times per day) and relatively high spatial 

resolution (1 km), has been widely applied for monitoring UHI  (Wang et al., 2019; Niu et al., 2020). Despite 

having a coarse resolution, the daily MODIS LST products are ideal for time series analysis, providing daily 

LST data at global scale since 2000. On the other hand, with a high spatial resolution of 30–120 m, Landsat 

TM/ETM+/OLI data has been used to estimate the LST for SUHI study in recent years (Neiva et al., 2017; 

Peres et al., 2018; Simwanda et al., 2019). In addition, as vegetation transpiration mitigates the effect of 

SUHI (Chen et al., 2020), numerous studies have focused on understanding the relationship between LST 

and the normalized difference vegetation index (NDVI) (Inostroza et al., 2016; Guha and Govil, 2020). These 

studies found that the NDVI-LST relationship was more suitable for the analysis of SUHI for different 

seasons in different climate regions (Chakraborty and Lee, 2019). It is therefore increasingly important that 

long-term data is necessary to capture urban transformation cycles and its relationship with urban 

development (Hong et al., 2019). 

In the present study, Landsat 5 TM and Landsat 8 OLI/TIRS thermal images were used to retrieve 

LST and analyze the spatial pattern of LST and its variation with different LULC types and MODIS 

image were used to extract SUHI intensity in Metropolitan Region of Belém. Particularly, our analysis 

focuses on temporal and spatial variability of SUHI intensity along urban development trajectory using 

MODIS archive and climate conditions (e.g., rainfall) together. The objectives of this study are: (i) to 

analyze the spatial distributions of NDVI and LST using Landsat TM/OLI/TIRS images acquired in 

1988 and 2018; and (ii) to analyze SUHI intensity (2003-2018) in Metropolitan Region of Belém. 

Materials and Methods 

Study area 

Metropolitan Region of Belém is divided into 26 administrative districts, which reflect distinct 

geographical patterns of climate and weather (IBGE, 2018). The study was conducted in Belém, 

Guamá, Sacramenta, Entroncamento, Bengui, Icoaraci, Ananindeua, and Marituba districts, which is 

located in Pará state (01° 30' 00'' to 01° 12' 00'' S latitude and 48° 32' 00'' to 48° 16' 00'' W longitude) 

(Figure 1), Brazil. It has a total area of 350.34 km², from which the terrestrial part was about 293.35 

km². Around the Metropolitan Region of Belém, high-density residential area has been a typical land 

cover, but the density of residential buildings has been changed dramatically during the study period: 

compact mid-rise until 1988, and compact low-rise between 1998 and 2018. Therefore, the observed 

data at the Metropolitan Region of Belém is useful for evaluating and tracking the changes in micro-

climatic environment with progress of urbanization and economic growth. 

The microclimate of area also influences the urban climate (Gonçalves et al., 2019). Tropical cities, 

and therefore Metropolitan Region of Belém being located in the North Brazil, belong to the tropical 

wet equatorial zone; af type of Köppen’s climate zones (Dubreuil et al., 2018). The elevation ranges 

between 10 and 40 m.a.s.l., with daily average temperatures around 31.2 and 33.3 °C, and annual 

precipitation between 2750 and 2834 mm. The bimodal rainy pattern comprises a wet season 

(December – May) and a dry season (June – November) (Ferreira et al., 2015). 
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Figure 1 - Location of the sampled urban areas and land use map of the Metropolitan Region of Belém in 2018. The map 

also shows the administrative districts: (1) Belém, (2) Guamá, (3) Sacramenta, (4) Entroncamento, (5) Bengui, (6) Icoaraci, (7) 

Ananindeua and, (8) Marituba. Source: The author (2020). 

Retrieving land surface temperature 

The LST was computed from Landsat 5 TM thermal Band 6, and Landsat 8 OLI/TIRS Band 10 

images. To compute LST from these band following four necessary steps are required. 

Conversion of Digital Numbers (DN) to spectral radiance 

The TM images DN were converted into thermal spectral (Equation 1,2) according to (Markham 

and Barker, 1986). 

 

𝐿𝜆 = ((𝐿𝑀𝐴𝑋𝜆 − 𝐿𝑀𝐼𝑁𝜆) (𝑄𝐶𝐴𝐿𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁)⁄ ) ∗ (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁𝜆  (1) 

 

where 𝐿𝜆 is sensor spectral radiance (𝑊 (𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚)⁄ ), 𝑄𝐶𝐴𝐿 is quantized calibrated pixel values, 

𝐿𝑀𝐼𝑁𝜆 is spectral radiance scaled to 𝑄𝐶𝐴𝐿𝑀𝐼𝑁, 𝐿𝑀𝐴𝑋𝜆 is spectral radiance scaled to 𝑄𝐶𝐴𝐿𝑀𝐴𝑋, 

𝑄𝐶𝐴𝐿𝑀𝐼𝑁 is the minimum quantized calibrated pixel values (corresponding to 𝐿𝑀𝐼𝑁𝜆 in DN which is 

1), 𝑄𝐶𝐴𝐿𝑀𝐴𝑋 is the maximum quantized calibrated pixels values (corresponding to 𝐿𝑀𝐴𝑋𝜆 in DN 

which is 255). 

However, DN of Landsat 8 OLI/TIRS of band 10 images were converted to spectral radiance which 

is given by (Vermote et al., 2016). 
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𝐿𝜆 = 𝑀𝜆𝑄𝑐𝑎𝑙 + 𝐴𝐿           (2) 

 

where 𝐿𝜆 is sensor spectral radiance, 𝑀𝜆 is radiance multiplicative scaling factor for the band, 𝐴𝐿 is 

radiance additive scaling factor for the band, 𝑄𝑐𝑎𝑙 is level- pixel value in DN. 

Estimation of land surface emissivity 

Emissivity refers to the ratio of radiance emitted by real-surface materials at their temperature to 

radiance emitted by black body at the same temperature. In satellite images, pixels represent the earth 

surfaces are frequently mixed pixels, that is, they are a mixture of surface types like water, vegetation 

and soil. To estimate emissivity from satellite thermal band data, NDVI threshold method was used 

(Wang et al., 2014) by quantifying all land surface types. 

Therefore, NDVI and Proportion of vegetation (𝑃𝑉) are required to compute emissivity. The NDVI 

is an index which infers general conditions of vegetation and used to defined LST. It is also important 

to compute the proportion of vegetation and emissivity. This index was computed using equation 3. 

 

𝑁𝐷𝑉𝐼 =
𝐵𝑁𝐼𝑅−𝐵𝑅𝑒𝑑

𝐵𝑁𝐼𝑅+𝐵𝑟𝑒𝑑
           (3) 

 

where 𝐵𝑁𝐼𝑅 is near infrared band reflectance (Band 4 in Landsat 5; and Band 5 in Landsat 8); 𝐵𝑅𝑒𝑑  is 

red band reflectance (Band 3 in Landsat 5; and Band 4 in Landsat 8). 

According to Jin et al. (2015) and Quintano et al. (2015), proportion of vegetation (𝑃𝑉) computed 

by using soil and vegetation NDVI values (equation 4). 

 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2
          (4) 

 

where 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is a fully vegetated land-covers NDVI value (0.5); 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 is a non-vegetated land-

covers NDVI value (0.2). Then land surface emissivity computed as follows (Sobrino et al., 2004) 

(equation 5). 

 

𝜀 = {

𝜀𝑠                                                          𝑁𝐷𝑉𝐼 < 0.2

𝜀𝑣𝑃𝑉 + 𝜀𝑠(1 − 𝑃𝑉) + 𝐶𝜀             ≤ 𝑁𝐷𝑉𝐼 ≤ 0.5
𝜀𝑣 + 𝐶𝜀                                                  𝑁𝐷𝑉𝐼 ≥ 0.5

       (5) 

 

where 𝜀𝑣 is vegetation emissivity; 𝜀𝑠 is soil emissivity; 𝐶𝜀 is the surface geometrical distribution. 

Emissivity values of vegetation, soil and water for Landsat 5 and 8 are presented in Table 2. 

Computation of brightness temperature 

Brightness temperature (𝑇𝐵) is the actual temperature observed by the satellite under emissivity 

theory (Chander et al., 2009). It can be computed according to Planck’s equation (Tan et al., 2009) 

given below (equation 6). 
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𝑇𝐵 =
𝐾2

ln(
𝐾1

𝐿𝜆
+1)

            (6) 

 

where 𝑇𝐵 is the effective at sensor brightness temperature in Kelvin; 𝐿𝜆 is the spectral radiance at 

sensor’s aperture (𝑊 (𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚)⁄ ); 𝐾1 and 𝐾2 are the calibration constant for Landsat; 𝐾1 is 607.76 

𝑊 (𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚)⁄ ; and 𝐾2 is 1260.56 K. 

Estimation of LST 

The obtained brightness temperatures were referenced to a black body, which differ from the 

properties of real objects. Correction for spectral emissivity (𝜀) is a must and the emissivity corrected 

surface temperature was computed as follows (equation 7): 

 

𝑇𝑆 =
𝑇𝐵

{1+[(
𝜆𝑇𝐵

ℎ
𝑐
𝜎

) ln 𝜀]}

           (7) 

 

where 𝑇𝑆 is the surface radiant temperature in Kelvin (K); 𝑇𝐵 is the effective at sensor brightness 

temperature in Kelvin; 𝜆 is the wavelength of emitted radiance; ℎ is Plank’s constant (6.626 ∗

10−34 𝐽𝑠); 𝑐 is the velocity of light (2.998 ∗ 108 𝑚 𝑠⁄ ); 𝜎 is the Boltzmann constant (1.38 ∗ 10−23  𝐽 ⁄

𝐾); and 𝜀 is the surface emissivity. 

As the surface radiant temperature is in Kelvin, which differs from the commonly used centigrade, 

the LST in Celsius was calculated by adding the absolute zero (approximately –273.15 °𝐶). 

Seasonal variations of SUHI intensity 

In this study, to examine the SUHI regarding the spatiotemporal trends of intensity, we defined 

the urban main built-up area and surrounding non-urbanized area. We then infer built area based on 

the land cover classification using MapBiomas data (MapBiomas, 2020) and Google Earth Engine 

(Gorelick et al., 2017). In view of the concentrated distribution of built‐up areas in Metropolitan 

Region of Belém, we extracted the urban main built-up area based on visual interpretation. Water 

bodies in the urban area were excluded from this analysis because these pixels may have 

overshadowed the effect of the urbanization on LST (Muro et al., 2018). 

We excluded the LST products during the two seasons: May–April and September–

November, having very few cloud-free images. Therefore, within each year LST map during the 

wet season (December – February) and the dry season season (June – August) were considered 

during 2003 – 2018. Specifically, for each year, all the images were divided into daytime (10:00 

and 14:00) and night-time (22:00 and 02:00). Then, they were averaged producing two mean 

LST images in the Metropolitan Region of Belém. In this way, a mean LST pattern for each 

specific year is available, with nighttime and daytime considered separately, at a 1-km spatial 

resolution (Mohammad et al., 2019). 

Then, a two-step method was used  to estimate the SUHI: (i) the mean daytime and 

nighttime SUHI intensity, the seasonal and yearly differences in SUHI intensity, the annual 

maximum and minimum values, their occurring seasons, and the annual ranges of the SUHI 

intensity during the daytime, nighttime, and all-day were calculated in the Metropolitan Region 

of Belém; (ii) significant differences in the SUHI intensity were observed between the daytime 

and nighttime as well as among the seasons, and these differences were determined using 
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nonparametric tests of two samples, 𝐾 dependent samples, and 𝐾 independent samples. This 

way, SUHI was defined as the area-averaged differential in LST between urban and rural area 

(Wu et al., 2019; Lee et al., 2019) as measured by the MODIS-derived LST data from Terra and 

Aqua satellites as follows: 

 

∆𝑇𝑛 = 𝑇𝑛 − 𝑇𝑟𝑢𝑟𝑎𝑙           (8) 

 

where ∆𝑇𝑛 represents the difference between the LST in urban and rural area, 𝑇𝑛 represents the 

LST in urban main built-up area, and 𝑇𝑟𝑢𝑟𝑎𝑙 represents the LST in the rural area (i.e., the 

background LST). Among them, ∆𝑇0 indicates the SUHI in the urban area. A positive value of ∆𝑇0 

indicates a SUHI effect, and the opposite indicates a “canopy layer cool island” (SUHI) effect. 

Therefore, the SUHI is loosely defined as the land surface temperature difference between the 

urban and rural areas (i.e., ∆𝑇0). 

Results 

Spatiotemporal variations of NDVI and LST distribution 

Figure 2 shows the derived Landsat TM based composite images, NDVI, and LST. Four 

reflective multispectral bands (Bands 2-5) were used for compositing. We obtained the spatial 

pattern of the building coverage in 1988 and in 2018, an obvious urban growth appeared in 

surroundings non-urban areas in both 1988 to 2018. The value of the NDVI ranges from 0.23 – 

0.82 in 1988, and changes to 0.13 – 0.79 in 2018, and the NDVI changed significantly due to 

urban expansion during this period. From the spatial distribution in both years, we concluded 

that the inner-southside area had a smaller NDVI value and a larger value of LST wide-ranging 

from 28.5 °𝐶 – 32.7 °𝐶, and that through a visual inspection, a surface urban heat island existed 

within the city. 

The LST spatial pattern shows in 1988 and 2018 considerable differences along the South -

east, North, and West areas of the city. The highest LST values are found in the South -east area 

of the city, where vegetation cover levels are lower. The lowest values are found towards the 

northwestern region of the urban area. Lower LST values in the central area of the city may be 

attributable to higher building densities. Large open spaces have a strong cooling effect. In some 

cases, cooling islands are associated with higher shares of vegetation, i.e., the presence of parks 

or other green areas. In other cases, the actual sealed surfaces accounts for lower LST values, 

probably related to the mutual shadowing of high-rise buildings. It is possible to appreciate the 

spatial correlation between large open spaces, green areas and lower LST values. A significant 

correlation was found comparing pixels of LST and NDVI (rPearson = -0.339, p<0.01). The 

maximum difference in LST based on the coolest and warmest places within the continuous 

urban area is 8.28 °𝐶. 
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Figure 2 - Distribution map of Landsat thematic mapper (TM/OLI/TIRS) composite image, NDVI, and LST. (a) Landsat TM 

composite image in 1988 (RGB = 432); (b) Distribution map of NDVI in 1998;(c) Distribution map of normalized LST in 1998; (d) 

Landsat OLI/TIRS composite image in 2018 (RGB = 543); (e) Distribution map of NDVI in 2018; and (f) Distribution map of LST in 

2018. Source: The author (2020). 

Temporal climate variables and SUHI trends in Metropolitan Region of Belém 

Meteorological data from the study period (Figure 3a) obtained from the National Institute of 

Meteorology (INMET) shows a wide variation in average air temperatures from below to above 

normal. There was a great variation in annual rainfall during 16 years from the minimum annual 

rainfall of 2689 mm to the maximum of 3583 mm, and air temperature has shown that its increase is 

due, at least in part, to differential changes by cloudy conditions, where minimum and maximum air 

temperature are respectively 31.7 °𝐶 and 32.9 °𝐶. 

In additional, the statistics of diurnal cycle of LST as derived from the average images revealed a 

strong heat island in the range of 0.85 °𝐶 – 1.08 °𝐶 during day and a weaker heat island in the range of 

0.55 °𝐶 – 1.17 °𝐶 at night (Figure 3b). Notably, it is also observed that the rapid increase of SUHI has 

decreased significantly with a few substantial drops since the late 2010's. Our finding suggests that the 

urbanization has been moving towards a different phase with completion of urban structure. 
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Figure 3 - (a) Temporal patterns of air temperature, rainfall and (b) UHI during daytime and nighttime in Metropolitan Region 

of Belém. The years with statistical significance (p ≤0.05) assessed by the Mann-Kendall test are denoted by dashed lines. 

Source: The author (2020). 

Spatiotemporal pattern of the SUHI in city center 

Based on the above variables, the SUHI intensity provides spatially explicit descriptions of the 

distribution of urban heat throughout the city and by each of the time periods (Figure 4). Land surface 

temperatures of the output raster SUHI representation depicts average daytime and nighttime 

maximum surface temperature from 4.23 °𝐶 and 1.25 °𝐶 with a mean of 0.93 °𝐶 and 0.38 °𝐶, and 

standard deviation of 0.84 and 0.44, respectively. In its broad sense, heavily forested areas (including 

major parks, in addition to certain residential areas) show a tendency towards cooler temperatures. 

Areas with lower canopy cover, such as those at the northeastern edge of the city (industrial, and 

airport areas), southeastern freeway corridors, and port yards, consistently appear hotter in the 

daytime. Additionally, areas around roadways show small and localized ‘pockets’ of heat within close 

proximity in nighttime.  

We observed a pattern of heat distribution wherein downtown Metropolitan Region of Belém, 

along with the inner-southside industrial area exhibit the highest levels of heat. Land surface 

temperatures in these areas can be over 5 °𝐶 hotter than areas of the city such as those to the South 

and North. Therefore, the urban main built-up area shows higher land surface temperatures as 

compared to the rural reference. Moreover, there is a seasonality influence on the ranking in 

magnitude of the SUHI intensity between the monitoring stations. In all seasons (wet and dry), 

however, the built-up locations over South show the highest SUHI intensity values. The differences are 
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larger for the minimum and maximum SUHI values (1.25 °𝐶 and 4.35 °𝐶) for the mutual differences 

between the stations. 

 

Figure 4 - Distribution of the mean annual and seasonal (wet and dry) SUHI during the daytime and nighttime in Metropolitan 

Region of Belém during 2003 – 2018. Source: The author (2020). 

During a large part of the year, SUHI values in the built areas can be substantial (Figure 5). High 

values are usually observed on clear (dry season) days. Only in wet season the SUHI intensities are 

generally lower. However, even in this period SUHI max can reach 4.97 °𝐶 or more. While a fast cooling 

at the rural and water border reference site occurs under these conditions, surface temperatures in 

the urban environment remain more or less constant. Moreover, in this period, the SUHI intensity 

reaches its maximum already, remains at a constant maximum during a large part of the daytime, and 

declines rapidly just before nighttime. 
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The results clearly reveal that surface temperatures over the south downtown area of 

Metropolitan Region of Belém were significantly greater than those over the suburbs (North-east area) 

of Metropolitan Region of Belém in later years. However, Figure 5 reveal that surface temperatures 

over the Northwest area of Metropolitan Region of Belém are significantly lower than those over the 

Northeast of Metropolitan Region of Belém on 2005, 2014, and 2017, demonstrating the existence of 

an “urban cool island” effect, whereby city air is cooler than that of surrounding non-urban areas on 

daytime. 

 

 

Figure 5 - Distribution of the annual day and seasonal (wet and dry) SUHI during the daytime in Metropolitan Region of 

Belém. Source: The author (2020). 

On the other hand, SUHI intensity in Metropolitan Region of Belém tend to be lower in nighttime 

than in daytime, seems to be similar between the wet and dry as well as on annual (Figure 6). The 

general trend shows that in all urbanized areas, SUHI intensity distribution tends to be more 

homogeneous in nighttime, i.e. with a lower land surface temperature amplitude. Unlike, a few areas 

are recurrent hotspots and coldspots relatively to the spatial mean LST. These climatic 

inhomogeneities should be related to peculiarities in terms of urban features. In general, due to 

variations in the SUHI effect and its moderate magnitude during the night, with homogeneous urban 

morphology and indicators (e.g. inner-southside area) have less coldspots than SUHI intensities with 

heterogeneous urban morphology (e.g. northwest and northeast areas). Then, clearly that the highest 

SUHI intensity is distributed in the south downtown and northeast areas, and that lower SUHI 

intensities are distributed in the northwest and northeast areas between nighttime and daytime in 

Metropolitan Region of Belém. 
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Figure 6 - Distribution of the annual night and seasonal (wet and dry) SUHI during the nighttime in Metropolitan Region of 

Belém. Source: The author (2020). 

Discussion 

Accurately patterns of SUHI demands knowledge of how natural and human-created landscapes 

change weather and climate across spatial and temporal scales (Voelkel and Shandas, 2017; Bauer, 

2020). The streetscape characteristics associated with increased SUHI-related daytime and nighttime 

temperature in Metropolitan Region of Belém were linked to both natural and built causes (Chun and 

Guldmann, 2018). Across the techniques used in this study, urban features were found to be drastically 

more important than natural features at higher ambient temperature (Smoliak et al., 2015). 

Across study area, common patterns were observed: forested and otherwise vegetated areas are 

cooler than urbanized areas; lower-density urban areas are often cooler than high-density urban 

areas. In nighttime, the difference is not changed significantly, in daytime there is the difference is 

largest, which we speculate may be influenced due to the non-land use variables (e.g., wind speed, 

albedo, etc.) that are left out of our results (Haashemi et al., 2016). As shown Li et al. (2020), the SUHI 

phenomenon using satellite remote sensing data have been include variables such as albedo in their 

techniques which, if included in our research, could improve our analysis power, because many 

processes observed in nature are spatially variable, especially in the field of geography and 

meteorology. 

In fact, a comparative study of the long-term SUHI phenomenon is not simple because of the 

complexities regarding acquisition and inconsistency of data. This study, thus, is meaningful because 

SUHI intensities were compared and analyzed for multiple administrative districts and seasons using 

unified and available data and methods. MODIS land surface temperature data seem to be able to 
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capture the average increase in temperature as urban areas increase. However, there may be 

limitations, such as microscopic differences due to the resolution of the data and the use of the 

temperatures of short-term temperature time series, as demonstrated by Wu et al. (2019). 

In additional, De Oliveira et al. (2020) showed that the most negatively evaluated places (e.g., with 

high temperatures) associate a clear perception of environmental nuisances (e.g., pollution) with a 

feeling of a degraded or unpleasant condition of the place (e.g. lack of green spaces, natural areas) in 

Metropolitan Region of Belém. This distinction between places is persistent with season and time of 

day and is reflected in the evaluation of thermal comfort and consequently lead to increasing effect of 

SUHI (Priyankara et al., 2019). Thus, loss of urban green areas potentially poses a significant threat to 

citizens vulnerable to heat-associated illness, particularly considering climate change and global 

warming predictions, which are set to be exaggerated in a densely built-up area (Venter et al., 2020). 

In this way, the stronger negative correlation between mean NDVI and mean LST was also 

expected, since higher NDVI values signify healthier vegetation, improved photosynthesis, and fuller 

leaf canopies (Kaplan et al., 2018). In fact, important research remains on how to maximize NDVI 

values in urban ecosystems, but the literature suggests increasing native species (e.g., flora and fauna) 

richness, complexity, and diversity (Johnson et al., 2019). However, landscape compositions lack 

detailed information needed by engineers, architects, urban planners, and designers to create 

solutions in complex urban settings (Lemonsu et al., 2015; Soltani and Sharifi, 2017). 

Based on the correlation analyses, global studies have looked at a limited number of spectral 

indices, to analyze the influence of land cover on temperature since vegetation cover, surface soil 

water content and impervious surface cover are known to be determinants of LST (Leconte et al., 

2015; Van Hove et al., 2015; Gusso et al., 2017; Alexander, 2020). Although vegetation cover is known 

to reduce LST, vegetation types may differ in their ability to reduce surface temperature (Sussman et 

al., 2019) because trees lower surface and air temperature by shading in addition to 

evapotranspiration. In a study by Duncan et al. (2018), the surface temperature of grass was found to 

be much lower than asphalt or concrete in sun as well as in shade. Moreover, tree shade had the 

potential to reduce the temperature of both surfaces by up to 7 °C. 

Further studies on urbanization factors and levels influencing the SUHI intensity using higher 

resolution materials and methods will be needed. Nevertheless, an important yet often unexplored 

research topic is the spatial patterns of future urban development and its impacts. 

Conclusions 

Seasonal variation of SUHI were calculated for Metropolitan Region of Belém for the period 2003–

2018, using MODIS and Landsat satellite data. LST and land cover data were used in order to assess 

the LST values in urban and non-urban areas of the city and to examine the SUHI intensity trend for 

the last 16 years. The 2003–2018 time-series analysis found positive daytime LST trends, with the 

highest values found at the urban core of the city, and positive nighttime LST trends. SUHI trends 

exhibit large variations, for daytime an increasing but not statistically significant. At nighttime, the 

SUHI trends are considerably limited with both positive and negative trends found. 

Our results highlight the important contribution of remote sensing towards improving the maps 

of urban heat islands in tropical areas. Using satellite imagery to expand insights for SUHI is 

particularly useful in data-poor areas and should be helpful for policymakers to formulate counter-

measures to mitigate the effects of SUHI and create more sustainable and environment-friendly cities. 

In addition, further comparison studies among different cities could be conducted in order to obtain 

more reliable results, and different climatic conditions should also be considered in different cities in 

future research. 
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